A Real Time Super Resolution Accelerator with Tilted Layer Fusion

An Jung Huang, Kai Chieh Hsu, Tian Sheuan Chang

研究成果: Conference contribution同行評審

4 引文 斯高帕斯(Scopus)

摘要

Deep learning based superresolution achieves high-quality results, but its heavy computational workload, large buffer, and high external memory bandwidth inhibit its usage in mobile devices. To solve the above issues, this paper proposes a real-time hardware accelerator with the tilted layer fusion method that reduces the external DRAM bandwidth by 92% and just needs 102KB on-chip memory. The design implemented with a 40nm CMOS process achieves 1920xl080@60fps throughput with 544. 3K gate count when running at 600MHz; it has higher throughput and lower area cost than previous designs.

原文English
主出版物標題IEEE International Symposium on Circuits and Systems, ISCAS 2022
發行者Institute of Electrical and Electronics Engineers Inc.
頁面2665-2669
頁數5
ISBN(電子)9781665484855
DOIs
出版狀態Published - 2022
事件2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022 - Austin, 美國
持續時間: 27 5月 20221 6月 2022

出版系列

名字Proceedings - IEEE International Symposium on Circuits and Systems
2022-May
ISSN(列印)0271-4310

Conference

Conference2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022
國家/地區美國
城市Austin
期間27/05/221/06/22

指紋

深入研究「A Real Time Super Resolution Accelerator with Tilted Layer Fusion」主題。共同形成了獨特的指紋。

引用此