跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
A Novel Multicategory Defect Detection Method Based on the Convolutional Neural Network Method for TFT-LCD Panels
Yung Chia Chang
, Kuei Hu Chang
*
, Hsien Mi Meng, Hung Chih Chiu
*
此作品的通信作者
工業工程與管理學系
研究成果
:
Article
›
同行評審
13
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「A Novel Multicategory Defect Detection Method Based on the Convolutional Neural Network Method for TFT-LCD Panels」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Automatic Optical Inspection
33%
Class Imbalance Problem
33%
Classification Model
33%
Classification Process
33%
Convolutional Neural Network
100%
Convolutional Neural Network Model
33%
Data Augmentation
33%
Defect Detection
100%
Defective pixels
33%
Detection Method
100%
Human Inspection
33%
Liquid Crystal Display
100%
Macrodefects
33%
Microdefects
33%
Multi-category Classification
33%
Multicategory
100%
Naked-eye
33%
Neural Network Method
100%
Prediction Accuracy
33%
Specialist Training
33%
Taiwan
33%
TFT-LCD
100%
Training Strategy
33%
Engineering
Classification Process
33%
Convolutional Neural Network
100%
Defect Detection
100%
Detection Process
33%
Liquid Crystal Display
100%
Microdefect
33%
Naked Eye
33%
Network Model
33%
Thin-Film Transistor
100%
Computer Science
Classification Models
33%
Classification Process
33%
Convolutional Neural Network
100%
Data Augmentation
33%
Detection Method
100%
Detection Process
33%
Liquid Crystal Display
100%
Neural Network Model
33%
Prediction Accuracy
33%
Mathematics
Convolutional Neural Network
100%
Defectives
100%
Detection Method
100%
Network Model
50%
Chemical Engineering
Film
100%
Neural Network
100%