跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
A Novel Algorithm to Estimate the Significance Level of a Feature Interaction Using the Extreme Gradient Boosting Machine
Chao Yu Guo
*
, Ke Hao Chang
*
此作品的通信作者
公共衛生研究所
研究成果
:
Article
›
同行評審
14
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「A Novel Algorithm to Estimate the Significance Level of a Feature Interaction Using the Extreme Gradient Boosting Machine」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Novel Algorithm
100%
Feature Interaction
100%
Extreme Gradient Boosting Machine
100%
Machine Learning Algorithms
40%
Interaction Effect
40%
Multiple Regression Model
40%
Interaction Terms
40%
Interaction Ratio
40%
Tion
20%
Statistical Methods
20%
Simulation Study
20%
Statistical Techniques
20%
Regression Model
20%
Specific Features
20%
Statistical Model
20%
Cross-validation Method
20%
Overfitting
20%
Type I Error
20%
Interactive Features
20%
Ratio Distribution
20%
Nominal Level
20%
Machine Learning Strategies
20%
Novel Machine
20%
Cardiac Research
20%
Interactive Variables
20%
Engineering
Interaction Effect
100%
Interaction Term
100%
Machine Learning Algorithm
100%
Significance Level
100%
Interaction Ratio
100%
Computer Simulation Study
50%
Cross-Validation Technique
50%
Learning System
50%
Statistical Model
50%
Computer Science
Feature Interaction
100%
Significance Level
100%
Extreme Gradient Boosting
100%
Machine Learning Algorithm
40%
Interaction Term
40%
Interaction Effect
40%
Statistics
40%
Computer Simulation
20%
Validation Technique
20%
Simulation Study
20%
Machine Learning
20%
Learning System
20%
Statistical Model
20%