摘要
Consider a set of demands, each taking length-k strings as input. The k-restriction problem is to construct a small set of length-m strings, such that given any k positions and any demand, there exists a string in the set satisfying the demand at these positions. The k-restriction problem relates to many problems, such as k-independent sets, covering arrays, and many other combinatorial applications. By considering the VC-dimension of demands, we prove bounds independent of the number of demands with the Lovász Local Lemma. As a result, we can prove better bounds for demands with finite VC-dimension.
原文 | English |
---|---|
文章編號 | 106515 |
期刊 | Information Processing Letters |
卷 | 187 |
DOIs | |
出版狀態 | Published - 1月 2025 |