TY - JOUR
T1 - A magnetic vehicle realized tumor cell-targeted radiotherapy using low-dose radiation
AU - Chen, Hsiao Ping
AU - Tung, Fu I.
AU - Chen, Ming Hong
AU - Liu, Tse Ying
N1 - Publisher Copyright:
© 2016 Elsevier B.V. All rights reserved.
PY - 2016/3/28
Y1 - 2016/3/28
N2 - Radiotherapy, a common cancer treatment, often adversely affects the surrounding healthy tissue and/or cells. Some tumor tissue-focused radiation therapies have been developed to lower radiation-induced lesion formation; however, achieving tumor cell-targeted radiotherapy (i.e., precisely focusing the radiation efficacy to tumor cells) remains a challenge. In the present study, we developed a novel tumor cell-targeted radiotherapy, named targeted sensitization-enhanced radiotherapy (TSER), that exploits tumor-specific folic acid-conjugated carboxymethyl lauryl chitosan/superparamagnetic iron oxide (FA-CLC/SPIO) micelles to effectively deliver chlorin e6 (Ce6, a sonosensitizer) to mitochondria of HeLa cells under magnetic guidance. For the in vitro tests, the sensitization of Ce6 induced by ultrasound, that could weaken the radiation resistant ability of tumor cells, occurred only in Ce6-internalizing tumor cells. Therefore, low-dose X-ray irradiation, that was not harmful to normal cells, could exert high tumor cell-specific killing ability. The ratio of viable normal cells to tumor cells was increased considerably, from 7.8 (at 24 h) to 97.1 (at 72 h), after they had received TSER treatment. Our data suggest that TSER treatment significantly weakens tumor cells, resulting in decreased viability in vitro as well as decreased in vivo subcutaneous tumor growth in nude mice, while the adverse effects were minimal. Taken together, TSER treatment appears to be an effective, clinically feasible tumor cell-targeted radiotherapy that can solve the problems of traditional radiotherapy and photodynamic therapy.
AB - Radiotherapy, a common cancer treatment, often adversely affects the surrounding healthy tissue and/or cells. Some tumor tissue-focused radiation therapies have been developed to lower radiation-induced lesion formation; however, achieving tumor cell-targeted radiotherapy (i.e., precisely focusing the radiation efficacy to tumor cells) remains a challenge. In the present study, we developed a novel tumor cell-targeted radiotherapy, named targeted sensitization-enhanced radiotherapy (TSER), that exploits tumor-specific folic acid-conjugated carboxymethyl lauryl chitosan/superparamagnetic iron oxide (FA-CLC/SPIO) micelles to effectively deliver chlorin e6 (Ce6, a sonosensitizer) to mitochondria of HeLa cells under magnetic guidance. For the in vitro tests, the sensitization of Ce6 induced by ultrasound, that could weaken the radiation resistant ability of tumor cells, occurred only in Ce6-internalizing tumor cells. Therefore, low-dose X-ray irradiation, that was not harmful to normal cells, could exert high tumor cell-specific killing ability. The ratio of viable normal cells to tumor cells was increased considerably, from 7.8 (at 24 h) to 97.1 (at 72 h), after they had received TSER treatment. Our data suggest that TSER treatment significantly weakens tumor cells, resulting in decreased viability in vitro as well as decreased in vivo subcutaneous tumor growth in nude mice, while the adverse effects were minimal. Taken together, TSER treatment appears to be an effective, clinically feasible tumor cell-targeted radiotherapy that can solve the problems of traditional radiotherapy and photodynamic therapy.
KW - Chlorin e6
KW - Drug vehicle
KW - Magnetic guidance
KW - Targeted delivery
KW - Tumor cell-targeted radiotherapy
UR - http://www.scopus.com/inward/record.url?scp=84958957847&partnerID=8YFLogxK
U2 - 10.1016/j.jconrel.2016.02.025
DO - 10.1016/j.jconrel.2016.02.025
M3 - Article
C2 - 26892750
AN - SCOPUS:84958957847
SN - 0168-3659
VL - 226
SP - 182
EP - 192
JO - Journal of Controlled Release
JF - Journal of Controlled Release
ER -