跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
A machine learning study for predicting driver goals in contingencies with leading and lagging features during goal determination
Hsueh Yi Lai
*
*
此作品的通信作者
工業工程與管理學系
研究成果
:
Article
›
同行評審
1
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「A machine learning study for predicting driver goals in contingencies with leading and lagging features during goal determination」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Machine Learning Experiments
100%
Defensive Driving
100%
Goal Determination
100%
Decision Support System
33%
Predictive Models
33%
Result Prediction
33%
Machine Learning Algorithms
33%
Machine Learning
33%
Decision Support
33%
Early Detection
33%
Reflex
33%
Driving Task
33%
Simulated Driving
33%
Cognitive State
33%
Random Forest
33%
Time Pressure
33%
Cognitive Outcome
33%
Drowsiness
33%
Pressure Condition
33%
Model Performance
33%
Data Learning
33%
Learned Features
33%
Fatigue Index
33%
Nave Bayes Classifier
33%
Extreme Gradient Boosting
33%
Early Prediction
33%
Immediate Reactions
33%
Psychological Data
33%
Reflex Control
33%
Scenario Assessment
33%
Active Choice
33%
Emerging Scenarios
33%
Computer Science
Decision-Making
100%
Related Feature
100%
Machine Learning
100%
Learning System
100%
Decision Support System
33%
Machine Learning Algorithm
33%
Predictive Model
33%
Performance Model
33%
Bayes Classifier
33%
Early Detection
33%
Random Decision Forest
33%
Extreme Gradient Boosting
33%
Nave Bayes
33%
Cognitive Outcome
33%
Engineering
Learning System
100%
Support System
50%
Early Detection
50%
Bayes Classifier
50%
Machine Learning Algorithm
50%
Random Forest
50%
Psychology
Decision Making
100%
Cognitive State
33%
Learning Algorithm
33%
Psychology
33%
Neuroscience
Decision-Making
100%
Cognitive State
33%
Machine Learning Algorithm
33%
Biochemistry, Genetics and Molecular Biology
Decision Making
100%
Random Forest
33%
Decision Support System
33%