摘要
Improving the reaction kinetics and durability of air electrodes on protonic ceramic cells is effective for their commercialization but challenging. Here, we report our electrode design via a low-Lewis-acid-strength cation (Cs+) doping strategy on a double perovskite oxide with a detailed formula of PrBa0.9Cs0.1Co2O5+δ (PBCsC). At 600 °C, the PBCsC electrode demonstrates a low area-specific resistance (ASR) value of 0.3 Ω cm2 within 100 h without significant degradation due likely to the electron pair shift by the polarization distribution of ionic Lewis acid strength at A and B sites. At 650 °C, a full cell with the PBCsC electrode displays an encouraging peak power density of 1.66 W cm–2 in the fuel cell (FC) mode, a high current density of −2.85 A cm–2 (at 1.3 V) in the electrolysis (EC) mode, good operational stability in dual modes of FC and EC, and promising cycling durability of 20 cycles in ∼80 h.
原文 | American English |
---|---|
頁(從 - 到) | 4145–4155 |
期刊 | ACS Energy Letters |
卷 | 8 |
DOIs | |
出版狀態 | Published - 13 9月 2023 |