TY - JOUR
T1 - A Hybrid 1D-CNN-LSTM Technique for WKF-Induced Variability of Multi-Channel GAA NS- and NF-FETs
AU - Dash, Sagarika
AU - Li, Yiming
AU - Sung, Wen Li
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2023
Y1 - 2023
N2 - Presently deep learning (DL) techniques are massively used in the semiconductor industry. At the same time, applying a deep learning approach for small datasets is also an immense challenge as larger dataset generation needs more computational time-cost factors for technology computer-aided design (TCAD) simulation. In this paper, to overcome the aforesaid issue, a hybrid DL-aided prediction of electrical characteristics of the multichannel devices induced by work function fluctuation (WKF) with a smaller dataset is proposed. For the first time, an amalgamation approach of two deep learning algorithms (i.e.1D-CNN and LSTM) is implemented for all four channels (1 to 4 channels) of gate-all-around (GAA) silicon Nanosheet and Nanofin MOSFETs (NS-FETs and NF-FETs). The proposed joint learning framework combines a one-dimensional convolutional neural network (1D-CNN) with long short-term memory (LSTM) model. In this architecture, CNN can extract the features efficiently from the input WKF, and LSTM identifies the historical sequence of the captured features of the input regression data. To illustrate the excellency of the proposed approach, a comparative study of our hybrid model along with three individual DL models i.e. 1D-CNN and LSTM including a baseline multilevel perceptron (MLP) model are demonstrated for a promising small dataset (i.e.1100 samples). The results indicate a superior prediction of 1D-CNN-LSTM in terms of root mean square error (RMSE) with an average value of 1.7943X 10-7 and R2 Score with an average value of 96.18% within the shortest time span in contrast to the other three algorithms. Finally, it can be quantified according to the evaluation and performance that hybrid methodology not only adopts the complexity of both NS- and NF-FETs, but also estimates the characteristics of all four channels of it efficiently with a smaller dataset, lesser time span, and reduced computational cost.
AB - Presently deep learning (DL) techniques are massively used in the semiconductor industry. At the same time, applying a deep learning approach for small datasets is also an immense challenge as larger dataset generation needs more computational time-cost factors for technology computer-aided design (TCAD) simulation. In this paper, to overcome the aforesaid issue, a hybrid DL-aided prediction of electrical characteristics of the multichannel devices induced by work function fluctuation (WKF) with a smaller dataset is proposed. For the first time, an amalgamation approach of two deep learning algorithms (i.e.1D-CNN and LSTM) is implemented for all four channels (1 to 4 channels) of gate-all-around (GAA) silicon Nanosheet and Nanofin MOSFETs (NS-FETs and NF-FETs). The proposed joint learning framework combines a one-dimensional convolutional neural network (1D-CNN) with long short-term memory (LSTM) model. In this architecture, CNN can extract the features efficiently from the input WKF, and LSTM identifies the historical sequence of the captured features of the input regression data. To illustrate the excellency of the proposed approach, a comparative study of our hybrid model along with three individual DL models i.e. 1D-CNN and LSTM including a baseline multilevel perceptron (MLP) model are demonstrated for a promising small dataset (i.e.1100 samples). The results indicate a superior prediction of 1D-CNN-LSTM in terms of root mean square error (RMSE) with an average value of 1.7943X 10-7 and R2 Score with an average value of 96.18% within the shortest time span in contrast to the other three algorithms. Finally, it can be quantified according to the evaluation and performance that hybrid methodology not only adopts the complexity of both NS- and NF-FETs, but also estimates the characteristics of all four channels of it efficiently with a smaller dataset, lesser time span, and reduced computational cost.
KW - CNN-LSTM
KW - deep learning
KW - GAA
KW - hybrid machine learning
KW - LSTM
KW - nanofin
KW - nanosheet
KW - statistical device simulation
KW - transfer characteristics
KW - work function fluctuation
UR - http://www.scopus.com/inward/record.url?scp=85161506756&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2023.3282983
DO - 10.1109/ACCESS.2023.3282983
M3 - Article
AN - SCOPUS:85161506756
SN - 2169-3536
VL - 11
SP - 56619
EP - 56633
JO - IEEE Access
JF - IEEE Access
ER -