A Highly Efficient Multi-phase Catalyst Dramatically Enhances the Rate of Oxygen Reduction

Yu Chen, YongMan Choi, Seonyoung Yoo, Yong Ding, Ruiqiang Yan, Kai Pei, Chong Qu, Lei Zhang, Ikwhang Chang, Bote Zhao, Yanxiang Zhang, Huijun Chen, Yan Chen, Chenghao Yang, Ben deGlee, Ryan Murphy, Jiang Liu, Meilin Liu

研究成果: Article同行評審

234 引文 斯高帕斯(Scopus)

摘要

This work demonstrates that a multi-phase catalyst coating (∼30 nm thick), composed of BaCoO3−x (BCO) and PrCoO3−x (PCO) nanoparticles (NPs) and a conformal PrBa0.8Ca0.2Co2O5+δ (PBCC) thin film, has dramatically enhanced the rate of oxygen reduction reaction (ORR). When applied to a state-of-the-art La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode in a solid oxide fuel cell (SOFC), the catalyst coating reduced the cathodic polarization resistance from 2.57 to 0.312 Ω cm2 at 600°C. Oxygen molecules adsorb and dissociate rapidly on the NPs due to enriched surface oxygen vacancies and then quickly transport through the PBCC film, as confirmed by density functional theory-based computations. The synergistic combination of the distinctive properties of the two separate phases dramatically enhances the ORR kinetics, which is attractive not only for intermediate-temperature SOFCs but also for other types of energy conversion and storage systems, including electrolysis cells and membrane reactors for synthesis of clean fuels.
原文American English
頁(從 - 到)938-949
頁數12
期刊Joule
2
發行號5
DOIs
出版狀態Published - 16 5月 2018

指紋

深入研究「A Highly Efficient Multi-phase Catalyst Dramatically Enhances the Rate of Oxygen Reduction」主題。共同形成了獨特的指紋。

引用此