A gradient reproducing kernel collocation method for boundary value problems

Sheng Wei Chi, Jiun Shyan Chen*, Hsin Yun Hu, J. P. Yang

*此作品的通信作者

研究成果: Article同行評審

78 引文 斯高帕斯(Scopus)

摘要

The earlier work in the development of direct strong form collocation methods, such as the reproducing kernel collocation method (RKCM), addressed the domain integration issue in the Galerkin type meshfree method, such as the reproducing kernel particle method, but with increased computational complexity because of taking higher order derivatives of the approximation functions and the need for using a large number of collocation points for optimal convergence. In this work, we intend to address the computational complexity in RKCM while achieving optimal convergence by introducing a gradient reproduction kernel approximation. The proposed gradient RKCM reduces the order of differentiation to the first order for solving second-order PDEs with strong form collocation. We also show that, different from the typical strong form collocation method where a significantly large number of collocation points than the number of source points is needed for optimal convergence, the same number of collocation points and source points can be used in gradient RKCM. We also show that the same order of convergence rates in the primary unknown and its first-order derivative is achieved, owing to the imposition of gradient reproducing conditions. The numerical examples are given to verify the analytical prediction.

原文English
頁(從 - 到)1381-1402
頁數22
期刊International Journal for Numerical Methods in Engineering
93
發行號13
DOIs
出版狀態Published - 30 3月 2013

指紋

深入研究「A gradient reproducing kernel collocation method for boundary value problems」主題。共同形成了獨特的指紋。

引用此