A generalized quantum correction drift diffusion model for nanoscale MOSFET device simulation

Yi-Ming Li*, Yen Yu Cho

*此作品的通信作者

研究成果: Chapter同行評審

摘要

In this paper, we apply our earlier proposed parallel and adaptive triangular mesh simulation technique for the numerical solution of a generalized quantum correction drift diffusion (DD) model. We solve the 2D DD equations coupled with a generalized Hänsch model for a nanoscale N-MOSFET device. This novel simulation based on adaptive triangular mesh, finite volume, monotone iterative, and posteriori error estimation methods, is developed and successfully implemented on a 16-PCs Linux-cluster with the message passing interface library. The generalized quantum correction DD model can be utilized to study the quantization effects of nanoscale MOSFET devices within the inversion layer. Our solution strategy fully exploits the inherent parallelism of the monotone iterative method and nonlinear property of the quantum correction DD equations on a Linux-cluster system. Numerical results for a 100 nm N-MOSFET device are presented to show the robustness and efficiency of the method. The achieved parallel performance demonstrates an excellent speedup with respect to the number of processors.

原文English
主出版物標題Recent Advances in Circuits, Systems and Signal Processing
發行者World Scientific and Engineering Academy and Society
頁面35-40
頁數6
ISBN(列印)9608052645
出版狀態Published - 1月 2002

指紋

深入研究「A generalized quantum correction drift diffusion model for nanoscale MOSFET device simulation」主題。共同形成了獨特的指紋。

引用此