TY - JOUR

T1 - A GA-based fuzzy adaptive learning control network

AU - Chung, I. Fang

AU - Lin, Cheng Jian

AU - Lin, Chin Teng

PY - 2000/5/16

Y1 - 2000/5/16

N2 - This paper addresses the structure and an associated learning algorithm of a feedforward multilayered connectionist network for realizing the basic elements and functions of a traditional fuzzy logic controller. The proposed fuzzy adaptive learning control network (FALCON) can be contrasted with the traditional fuzzy logic control systems in their network structure and learning ability. A structure/parameter learning algorithm, called FALCON-GA, is proposed for constructing the FALCON automatically. The FALCON-GA is a three-phase hybrid learning algorithm. In the first phase, the fuzzy ART algorithm is used to do fuzzy clustering in the input/output spaces according to the supervised training data. In the second phase, the genetic algorithm (GA) is used to find proper fuzzy logic rules by associating input clusters and output clusters. Finally, in the third phase, the backpropagation algorithm is used for tuning input/output membership functions. Hence, the FALCON-GA combines the backpropagation algorithm for parameter learning and both the fuzzy ART and GAs for structure learning. It can partition the input/output spaces, tune membership functions and find proper fuzzy logic rules automatically. The proposed FALCON has two important features. First, it reduces the combinatorial demands placed by the standard methods for adaptive linearization of a system. Second, the FALCON is a highly autonomous system. In its learning scheme, only the training data need to be provided from the outside world. The users need not give the initial fuzzy partitions, membership functions and fuzzy logic rules. Computer simulations have been conducted to illustrate the performance and applicability of the proposed system.

AB - This paper addresses the structure and an associated learning algorithm of a feedforward multilayered connectionist network for realizing the basic elements and functions of a traditional fuzzy logic controller. The proposed fuzzy adaptive learning control network (FALCON) can be contrasted with the traditional fuzzy logic control systems in their network structure and learning ability. A structure/parameter learning algorithm, called FALCON-GA, is proposed for constructing the FALCON automatically. The FALCON-GA is a three-phase hybrid learning algorithm. In the first phase, the fuzzy ART algorithm is used to do fuzzy clustering in the input/output spaces according to the supervised training data. In the second phase, the genetic algorithm (GA) is used to find proper fuzzy logic rules by associating input clusters and output clusters. Finally, in the third phase, the backpropagation algorithm is used for tuning input/output membership functions. Hence, the FALCON-GA combines the backpropagation algorithm for parameter learning and both the fuzzy ART and GAs for structure learning. It can partition the input/output spaces, tune membership functions and find proper fuzzy logic rules automatically. The proposed FALCON has two important features. First, it reduces the combinatorial demands placed by the standard methods for adaptive linearization of a system. Second, the FALCON is a highly autonomous system. In its learning scheme, only the training data need to be provided from the outside world. The users need not give the initial fuzzy partitions, membership functions and fuzzy logic rules. Computer simulations have been conducted to illustrate the performance and applicability of the proposed system.

KW - Backpropagation

KW - Chaotic sequence

KW - Expert systems

KW - Fuzzy ART

KW - Membership function

KW - Space partition

UR - http://www.scopus.com/inward/record.url?scp=0001847930&partnerID=8YFLogxK

U2 - 10.1016/S0165-0114(98)00095-5

DO - 10.1016/S0165-0114(98)00095-5

M3 - Article

AN - SCOPUS:0001847930

SN - 0165-0114

VL - 112

SP - 65

EP - 84

JO - Fuzzy Sets and Systems

JF - Fuzzy Sets and Systems

IS - 1

ER -