TY - JOUR
T1 - A Fuzzy Collaborative Intelligence Approach to Group Decision-Making
T2 - a Case Study of Post-COVID-19 Restaurant Transformation
AU - Chen, Toly
AU - Chiu, Min Chi
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2022
Y1 - 2022
N2 - In a fuzzy group decision-making task, when decision makers lack consensus, existing methods either ignore this fact or force a decision maker to modify his/her judgment. However, these actions may be unreasonable. In this study, a fuzzy collaborative intelligence approach that seeks the consensus among experts in a novel way is proposed. Fuzzy collaborative intelligence is the application of biologically inspired fuzzy logic to a group task. The proposed methodology is based on the fact that a decision maker must make a choice even if he/she is uncertain. As a result, the decision maker’s fuzzy judgment matrix may not be able to represent his/her judgment. To solve such a problem, the fuzzy judgment matrix of each decision maker is decomposed into several fuzzy judgment submatrices. From the fuzzy judgment submatrices of all decision makers, a consensus can be easily identified. The proposed fuzzy collaborative intelligence approach and several existing methods have been applied to the case of the post-COVID-19 transformation of a Japanese restaurant in Taiwan. Because such transformation was beyond the expectation of the Japanese restaurant, the employees lacked consensus if existing methods were applied to identify their consensus. The proposed methodology solved this problem. The optimal transformation plan involved increasing the distance between tables, erecting screens between tables, and improving air circulation. In a fuzzy group decision-making task, an acceptable decision cannot be made without the consensus among decision makers. Ignoring this or forcing decision makers to modify their preferences is unreasonable. Identifying the consensus among experts from another point of view is a viable treatment.
AB - In a fuzzy group decision-making task, when decision makers lack consensus, existing methods either ignore this fact or force a decision maker to modify his/her judgment. However, these actions may be unreasonable. In this study, a fuzzy collaborative intelligence approach that seeks the consensus among experts in a novel way is proposed. Fuzzy collaborative intelligence is the application of biologically inspired fuzzy logic to a group task. The proposed methodology is based on the fact that a decision maker must make a choice even if he/she is uncertain. As a result, the decision maker’s fuzzy judgment matrix may not be able to represent his/her judgment. To solve such a problem, the fuzzy judgment matrix of each decision maker is decomposed into several fuzzy judgment submatrices. From the fuzzy judgment submatrices of all decision makers, a consensus can be easily identified. The proposed fuzzy collaborative intelligence approach and several existing methods have been applied to the case of the post-COVID-19 transformation of a Japanese restaurant in Taiwan. Because such transformation was beyond the expectation of the Japanese restaurant, the employees lacked consensus if existing methods were applied to identify their consensus. The proposed methodology solved this problem. The optimal transformation plan involved increasing the distance between tables, erecting screens between tables, and improving air circulation. In a fuzzy group decision-making task, an acceptable decision cannot be made without the consensus among decision makers. Ignoring this or forcing decision makers to modify their preferences is unreasonable. Identifying the consensus among experts from another point of view is a viable treatment.
KW - Decomposition
KW - Fuzzy collaborative intelligence
KW - Fuzzy group decision-making
KW - Post-COVID-19 transformation
KW - Restaurant
UR - http://www.scopus.com/inward/record.url?scp=85122886803&partnerID=8YFLogxK
U2 - 10.1007/s12559-021-09989-5
DO - 10.1007/s12559-021-09989-5
M3 - Article
AN - SCOPUS:85122886803
SN - 1866-9956
JO - Cognitive Computation
JF - Cognitive Computation
ER -