TY - JOUR
T1 - A fair scheme for multi-channel selection in vehicular wireless networks
AU - Wang, Kuo Lung
AU - Wang, Tsan Pin
AU - Tseng, Chien-Chao
PY - 2013/12
Y1 - 2013/12
N2 - In recent years, the IEEE 802.11p/1609 wireless access in vehicular environments standards adopt the dedicated short-range communications multi-channel architecture for vehicular wireless networks. To utilize the multi-channel architecture, each vehicle equipped with two sets of transceivers can operate concurrently on three different channels. For example, in cluster-based multi-channel schemes, a cluster head vehicle coordinates and assigns an appropriate channel to its cluster members. However, these schemes are unsuitable for a single channel device performing on only one RF channel at a time which would waste channel resource and increase time to allocate a channel. Another approach, called LEACH-based scheme, selects channels randomly and ensures that each channel is selected once within a round in each vehicle. However, this leads to a situation that different vehicles might select the same channel in short-term duration. In this paper, we propose a multi-channel selection scheme, called minimum duration counter (MDC) scheme, which could apply to a single channel device, while utilizing the multi-channel architecture of an 802.11p/1609 network. In addition, we compare the MDC scheme with pure random (PR) and LEACH-based schemes in terms of fairness index (FI) and utilization to emphasize the fairness and to balance the traffic of multi-channel usage. Furthermore, we analyze the counter overflow probability distribution and propose solutions to the MDC scheme. Numerical results show that our scheme outperforms the PR and LEACH-based schemes in terms of multi-channel usage, traffic balancing, and fairness.
AB - In recent years, the IEEE 802.11p/1609 wireless access in vehicular environments standards adopt the dedicated short-range communications multi-channel architecture for vehicular wireless networks. To utilize the multi-channel architecture, each vehicle equipped with two sets of transceivers can operate concurrently on three different channels. For example, in cluster-based multi-channel schemes, a cluster head vehicle coordinates and assigns an appropriate channel to its cluster members. However, these schemes are unsuitable for a single channel device performing on only one RF channel at a time which would waste channel resource and increase time to allocate a channel. Another approach, called LEACH-based scheme, selects channels randomly and ensures that each channel is selected once within a round in each vehicle. However, this leads to a situation that different vehicles might select the same channel in short-term duration. In this paper, we propose a multi-channel selection scheme, called minimum duration counter (MDC) scheme, which could apply to a single channel device, while utilizing the multi-channel architecture of an 802.11p/1609 network. In addition, we compare the MDC scheme with pure random (PR) and LEACH-based schemes in terms of fairness index (FI) and utilization to emphasize the fairness and to balance the traffic of multi-channel usage. Furthermore, we analyze the counter overflow probability distribution and propose solutions to the MDC scheme. Numerical results show that our scheme outperforms the PR and LEACH-based schemes in terms of multi-channel usage, traffic balancing, and fairness.
KW - DSRC
KW - IEEE 802.11p/1609 WAVE standards
KW - Multi-channel selection scheme
KW - Vehicular wireless networks
UR - http://www.scopus.com/inward/record.url?scp=84890482047&partnerID=8YFLogxK
U2 - 10.1007/s11277-013-1247-0
DO - 10.1007/s11277-013-1247-0
M3 - Article
AN - SCOPUS:84890482047
SN - 0929-6212
VL - 73
SP - 1049
EP - 1065
JO - Wireless Personal Communications
JF - Wireless Personal Communications
IS - 3
ER -