跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
A Deep Learning-Based Strategy to the Energy Management-Advice for Time-of-Use Rate of Household Electricity Consumption
Lu-Xian Wu,
Shin-Jye Lee
*
*
此作品的通信作者
科技管理研究所
研究成果
:
Article
›
同行評審
8
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「A Deep Learning-Based Strategy to the Energy Management-Advice for Time-of-Use Rate of Household Electricity Consumption」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Taiwan
100%
Deep Learning Methods
100%
Energy Management
100%
Household Energy Consumption
100%
Management Guidance
100%
Time-of-use Rate
100%
Meta-learning Strategy
100%
Electricity Consumption
50%
Power Company
50%
Advanced Metering Infrastructure
50%
AI Technology
50%
Popular
25%
Neural Network
25%
Quantitative Methods
25%
Low Voltage
25%
Recurrent Neural Network
25%
Energy Demand
25%
Deep Learning
25%
Communication Channels
25%
Energy Increase
25%
Electricity Price
25%
Technology Management
25%
User Data
25%
AI Applications
25%
Industrialization
25%
Demand Side
25%
Industrial Field
25%
Effective Information
25%
Meteorological Data
25%
Rapid Progression
25%
Sound Energy
25%
Vicissitude
25%
Low Voltage User
25%
Electric Companies
25%
Electricity Information
25%
Backup Power
25%
Load Dispatch
25%
Industrial Enterprises
25%
Engineering
Energy Management
100%
Electricity Consumption
100%
Deep Learning Method
100%
Advanced Metering Infrastructure
66%
Artificial Intelligence
66%
Progression
33%
Communication Channel
33%
Electricity Price
33%
Demand Side
33%
Sound Energy
33%
Back-up Power
33%
Recurrent Neural Network
33%