A characterization of strongly regular graphs in terms of the largest signless Laplacian eigenvalues

Feng Lei Fan*, Chih-wen Weng

*此作品的通信作者

研究成果: Article同行評審

1 引文 斯高帕斯(Scopus)

摘要

Let G be a simple graph of order n with maximum degree Δ. Let λ (resp. μ) denote the maximum number of common neighbors of a pair of adjacent vertices (resp. nonadjacent distinct vertices) of G. Let q(G) denote the largest eigenvalue of the signless Laplacian matrix of G. We show thatq(G)≤Δ-μ4+(Δ-μ4)2+(1+λ)Δ+μ(n-1)-Δ2, with equality if and only if G is a strongly regular graph with parameters (n,Δ,λ,μ).

原文English
頁(從 - 到)1-5
頁數5
期刊Linear Algebra and Its Applications
506
DOIs
出版狀態Published - 1 10月 2016

指紋

深入研究「A characterization of strongly regular graphs in terms of the largest signless Laplacian eigenvalues」主題。共同形成了獨特的指紋。

引用此