A characterization of random analytic functions satisfying Blaschke-type conditions

Yongjiang Duan, Xiang Fang, Na Zhan

研究成果: Article同行評審

摘要

Let f(z) = ∑n=0 anzn ∈ H(D) be an analytic function over the unit disk in the complex plane, and let R f be its randomization: ∞ (R f)(z) = ∑ anXnzn ∈ H(D), n=0 where (Xn)n≥0 is a standard sequence of independent Bernoulli, Steinhaus, or Gaussian random variables. In this note, we characterize those f(z) ∈ H(D) such that the zero set of R f satisfies a Blaschke-type condition almost surely: ∞ ∑(1 − ∣zn∣)t < ∞, t > 1. n=1.

原文English
頁(從 - 到)670-679
頁數10
期刊Canadian Mathematical Bulletin
67
發行號3
DOIs
出版狀態Published - 1 9月 2024

指紋

深入研究「A characterization of random analytic functions satisfying Blaschke-type conditions」主題。共同形成了獨特的指紋。

引用此