摘要
Let f(z) = ∑∞n=0 anzn ∈ H(D) be an analytic function over the unit disk in the complex plane, and let R f be its randomization: ∞ (R f)(z) = ∑ anXnzn ∈ H(D), n=0 where (Xn)n≥0 is a standard sequence of independent Bernoulli, Steinhaus, or Gaussian random variables. In this note, we characterize those f(z) ∈ H(D) such that the zero set of R f satisfies a Blaschke-type condition almost surely: ∞ ∑(1 − ∣zn∣)t < ∞, t > 1. n=1.
原文 | English |
---|---|
頁(從 - 到) | 670-679 |
頁數 | 10 |
期刊 | Canadian Mathematical Bulletin |
卷 | 67 |
發行號 | 3 |
DOIs | |
出版狀態 | Published - 1 9月 2024 |