跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
A CFD Data-based Cavity Flow Surrogate Model with Machine Learning Algorithm
Shing Chung Lee
*
,
Kim Boon Lua
*
此作品的通信作者
機械工程學系
研究成果
:
Article
›
同行評審
1
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「A CFD Data-based Cavity Flow Surrogate Model with Machine Learning Algorithm」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Machine Learning Algorithms
100%
Data-centric
100%
Surrogate Model
100%
Cavity Flow
100%
Pressure Fluctuation
40%
CFD Results
40%
High Efficiency
20%
Prediction Accuracy
20%
Aeroacoustics
20%
Engineering Application
20%
Fluid Mechanics
20%
Military
20%
Concept Design
20%
Artificial Neural Network Algorithm
20%
Flight Vehicle
20%
Hardware Capabilities
20%
Stealth Technology
20%
Machine Learning Technology
20%
Computational Fluid Mechanics
20%
Experimental Fluid Mechanics
20%
Wind Tunnel Data
20%
LSTM Algorithm
20%
RNN Algorithm
20%
Engineering
Computational Fluid Dynamics
100%
Cavity Flow
100%
Machine Learning Algorithm
100%
Surrogate Model
100%
Fluid Mechanics
40%
Pressure Fluctuation
40%
Frequency Domain
20%
Engineering Application
20%
Test Point
20%
Design Stage
20%
Flow Domain
20%
Concept Design
20%
Artificial Neural Network
20%
Stealth Technology
20%
Tunnel
20%