A 48 TOPS and 20943 TOPS/W 512kb Computation-in-SRAM Macro for Highly Reconfigurable Ternary CNN Acceleration

Chih Sheng Lin, Fu Cheng Tsai, Jian Wei Su, Sih Han Li, Tian-Sheuan Chang, Shyh Shyuan Sheu, Wei Chung Lo, Shih Chieh Chang, Chih I. Wu, Tuo-Hung Hou

研究成果: Conference contribution同行評審

11 引文 斯高帕斯(Scopus)

摘要

Energy-and area-efficient acceleration solutions are critical for the continual development of ubiquitous, real-Time, and cross-domain artificial intelligence [1]-[7]. This motivates the active research on the SRAM-based computing-in-memory (CIM) that exploits the state-of-The-Art CMOS technology and massively parallel analog computing directly inside the memory array [1]-[4]. Although significant progress has been made in recent years in improving throughput [1-2], energy efficiency [1], [3], and area efficiency [1], [4], simultaneously achieving them in SRAM-CIM remains an unsolved problem. This is particularly challenging when accounting for the potential accuracy loss due to nonideality in analog computing and the inflexibility of CIM weight-stationary designs.

原文English
主出版物標題Proceedings - A-SSCC 2021
主出版物子標題IEEE Asian Solid-State Circuits Conference
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781665443500
DOIs
出版狀態Published - 2021
事件2021 IEEE Asian Solid-State Circuits Conference, A-SSCC 2021 - Busan, 韓國
持續時間: 7 11月 202110 11月 2021

出版系列

名字Proceedings - A-SSCC 2021: IEEE Asian Solid-State Circuits Conference

Conference

Conference2021 IEEE Asian Solid-State Circuits Conference, A-SSCC 2021
國家/地區韓國
城市Busan
期間7/11/2110/11/21

指紋

深入研究「A 48 TOPS and 20943 TOPS/W 512kb Computation-in-SRAM Macro for Highly Reconfigurable Ternary CNN Acceleration」主題。共同形成了獨特的指紋。

引用此