TY - JOUR
T1 - A 25 Gb/s 1.13 pJ/b -10.8 dBm Input Sensitivity Optical Receiver in 40 nm CMOS
AU - Huang, Shih Hao
AU - Chen, Wei-Zen
PY - 2017/3/1
Y1 - 2017/3/1
N2 - This paper describes the design of a 25 Gb/s energy-efficient CMOS optical receiver with high input sensitivity. By incorporating a current-boosting preamplifier with a dual-path time-interleaved integrating-type optical receiver, it provides 1:2 demultiplexing operation with a tolerance to lower bandwidth photodiodes. The bandwidth of current amplifier is chosen as 0.35× operating data rate for maximizing the receiver signal-to-noise ratio. Experimental results show that the receiver can achieve 25 Gb/s operation when integrated with a 9 or 17 GHz GaAs photodiode. Input sensitivities in the two cases are -7.2 dBm (w/i a 9 GHz photodiode) and -10.8 dBm (w/i a 17 GHz photodiode), respectively, for a bit error rate of less than 10-12. In addition, a single-tap decision-feedback equalizer (DFE) is embedded to compensate photodiode bandwidth and improve input sensitivity. Integrated with a low-cost 9 GHz photodiode, the input sensitivity and timing margin of the receiver are improved by 2 dB and 0.25 UI, respectively, after DFE compensation. By utilizing a current integrator and time-interleaved comparators, its energy efficiency is 1.13 pJ/b at 25 Gb/s under a 1.2 V power supply. Fabricated in a 40 nm bulk-CMOS technology, the core circuit occupies a chip area of 0.007 mm2 only.
AB - This paper describes the design of a 25 Gb/s energy-efficient CMOS optical receiver with high input sensitivity. By incorporating a current-boosting preamplifier with a dual-path time-interleaved integrating-type optical receiver, it provides 1:2 demultiplexing operation with a tolerance to lower bandwidth photodiodes. The bandwidth of current amplifier is chosen as 0.35× operating data rate for maximizing the receiver signal-to-noise ratio. Experimental results show that the receiver can achieve 25 Gb/s operation when integrated with a 9 or 17 GHz GaAs photodiode. Input sensitivities in the two cases are -7.2 dBm (w/i a 9 GHz photodiode) and -10.8 dBm (w/i a 17 GHz photodiode), respectively, for a bit error rate of less than 10-12. In addition, a single-tap decision-feedback equalizer (DFE) is embedded to compensate photodiode bandwidth and improve input sensitivity. Integrated with a low-cost 9 GHz photodiode, the input sensitivity and timing margin of the receiver are improved by 2 dB and 0.25 UI, respectively, after DFE compensation. By utilizing a current integrator and time-interleaved comparators, its energy efficiency is 1.13 pJ/b at 25 Gb/s under a 1.2 V power supply. Fabricated in a 40 nm bulk-CMOS technology, the core circuit occupies a chip area of 0.007 mm2 only.
KW - Comparator
KW - current amplifier (CA)
KW - decision-feedback equalizer (DFE)
KW - integrating-type receiver
KW - optical receiver
KW - photodetector
UR - http://www.scopus.com/inward/record.url?scp=85013319485&partnerID=8YFLogxK
U2 - 10.1109/JSSC.2016.2639534
DO - 10.1109/JSSC.2016.2639534
M3 - Article
AN - SCOPUS:85013319485
SN - 0018-9200
VL - 52
SP - 747
EP - 756
JO - IEEE Journal of Solid-State Circuits
JF - IEEE Journal of Solid-State Circuits
IS - 3
M1 - 7858746
ER -