A 1.86mJ/Gb/query bit-plane payload machine learning processor in 90nm CMOS

Fang Ju Ku, Tung Yu Wu, Yen Chin Liao, Hsie-Chia Chang, Wing Hung Wong, Chen-Yi Lee

研究成果: Conference contribution同行評審

1 引文 斯高帕斯(Scopus)

摘要

This paper presents an implementation of an energy efficient bit-plane payload design for machine learning processor. The proposed architecture facilitates high parallelism and high data bandwidth and thus improves the model learning/training time of machine learning algorithms. By assembling multiple bits as a bit-plane and enlarging query parallelism with a central compare-flag updater, data processing parallelism can be increased. Binary sequential partition (BSP), a fast density estimation algorithm capable of dealing with high dimensional data sets, is realized. Fabricated in 90nm 1P9M CMOS process, the processing rate can achieve 16.9 Gb/sec with 8 queries for data dimension D=210. The test chip integrates 64 counting cells and provides 5 modes with power consumptions of 1.86mJ/Gb per Query.

原文English
主出版物標題2018 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2018
發行者Institute of Electrical and Electronics Engineers Inc.
頁面1-4
頁數4
ISBN(電子)9781538642603
DOIs
出版狀態Published - 5 6月 2018
事件2018 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2018 - Hsinchu, Taiwan
持續時間: 16 4月 201819 4月 2018

出版系列

名字2018 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2018

Conference

Conference2018 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2018
國家/地區Taiwan
城市Hsinchu
期間16/04/1819/04/18

指紋

深入研究「A 1.86mJ/Gb/query bit-plane payload machine learning processor in 90nm CMOS」主題。共同形成了獨特的指紋。

引用此