8-Bit Precision 6T SRAM Compute-in-Memory Macro Using Global Bitline-Combining Scheme for Edge AI Chips

Jian Wei Su, Pei Jung Lu, Ping Chun Wu, Yen Chi Chou, Ta Wei Liu, Yen Lin Chung, Li Yang Hung, Jin Sheng Ren, Wei Hsing Huang, Chih Han Chien, Peng I. Mei, Sih Han Li, Shyh Shyuan Sheu, Wei Chung Lo, Shih Chieh Chang, Hao Chiao Hong, Chung Chuan Lo, Ren Shuo Liu, Chih Cheng Hsieh, Kea Tiong TangMeng Fan Chang*

*此作品的通信作者

研究成果: Article同行評審

1 引文 斯高帕斯(Scopus)

摘要

Efforts to advance the use of analog SRAM compute-in-memory (SRAM-CIM) macros for high-precision multiply-and-accumulate (MAC) operations must deal with issues pertaining to energy efficiency, computing latency (TAC), and area overhead. This brief presents a novel SRAM-CIM structure that utilizes (1) a high input precision computing cell (HIPCC) to perform 8b-MAC operations with high multiplication throughput, and (2) a global bitline-combining (GBL-comb) scheme to improve energy efficiency by reducing the number of analog-to-digital converters (ADCs). A 28nm 384-kb SRAM-CIM macro with 20-bit output precision (near-full precision) was fabricated using a foundry-provided 28nm logic process for MAC operations with 8b-input, 8b-weight, and 16 accumulations. The resulting macro achieved a TAC of 3.6 ns with energy efficiency of 14.97 TOPS/W when applied to 8-bit MAC operations.

原文English
頁(從 - 到)2304-2308
頁數5
期刊IEEE Transactions on Circuits and Systems I: Regular Papers
71
發行號4
DOIs
出版狀態Published - 4月 2024

指紋

深入研究「8-Bit Precision 6T SRAM Compute-in-Memory Macro Using Global Bitline-Combining Scheme for Edge AI Chips」主題。共同形成了獨特的指紋。

引用此