摘要
To solve the problems of mistaken coloring and color bleeding in the current colorization methods, an end-to-end deep neural network is proposed to achieve remote sensing image colorization. First, the multi-scale residual receptive filed net is introduced to extract the key features of source image. Second, a color information recovery network is con-structed by using U-Net, complex residual structure, attention mechanism, sequeeze-and-excitation and pixel-shuffle blocks to obtain color result. NWPU-RESISC45 dataset is chosen for model training and validation. Compared with other color methods, the PSNR value of the proposed method is increased by 6-10 dB on average and the SSIM value is increased by 0.05-0.11. In addition, the proposed method also achieves satisfactory color results on RSSCN7 and AID datasets.
貢獻的翻譯標題 | Remote Sensing Image Colorization Based on Deep Neural Networks with Multi-Scale Residual Receptive Filed |
---|---|
原文 | ???core.languages.zh_TW??? |
頁(從 - 到) | 1658-1667 |
頁數 | 10 |
期刊 | Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics |
卷 | 33 |
發行號 | 11 |
DOIs | |
出版狀態 | Published - 20 11月 2021 |
Keywords
- Deep neural network
- Image colorization
- Remote sensing