跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
查看斯高帕斯 (Scopus) 概要
謝 君偉
教授
智慧計算與科技研究所
電話
06-3032121 # 57909
電子郵件
jwhsieh
nctu.edu
tw
網站
https://aicvlab2019.wordpress.com/
h-index
h10-index
h5-index
6787
引文
31
h-指數
按照存儲在普爾(Pure)的出版物數量及斯高帕斯(Scopus)引文計算。
4238
引文
16
h-指數
按照存儲在普爾(Pure)的出版物數量及斯高帕斯(Scopus)引文計算。
3833
引文
11
h-指數
按照存儲在普爾(Pure)的出版物數量及斯高帕斯(Scopus)引文計算。
1993 …
2025
每年研究成果
概覽
指紋
網路
計畫
(13)
研究成果
(185)
類似的個人檔案
(4)
指紋
查看啟用 Jun-Wei Hsieh 的研究主題。這些主題標籤來自此人的作品。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Computer Science
Experimental Result
100%
Object Detection
48%
Vehicle Detection
29%
Traditional Method
26%
Convolutional Neural Network
25%
Multiplicity
23%
Lighting Condition
23%
Sparse Representation
20%
Deep Learning Method
20%
Event Analysis
18%
Video Sequences
16%
Behavior Analysis
15%
Background Subtraction
14%
Recognition System
14%
Neural Architecture Search
13%
Approximation (Algorithm)
13%
Information Retrieval
13%
Classification Scheme
12%
Motion Feature
12%
Event Detection
11%
Support Vector Machine
11%
Recognition Accuracy
11%
Tracking (Position)
11%
Color Classification
11%
Few-Shot Learning
11%
Attention (Machine Learning)
11%
Process Optimization
10%
Gaussian Mixture Model
10%
Action Sequence
10%
Feature Map
10%
Artificial Intelligence
10%
Captured Image
10%
Training Sample
10%
Adaboost Algorithm
9%
Color Correction
9%
Extracted Feature
9%
YOLOv3
9%
Time Complexity
9%
Feature Fusion
8%
Speed-up
8%
Template Matching
8%
Embedded Device
8%
Mobile Platform
8%
Morphology Based Method
8%
Content Analysis
8%
Verification Process
8%
Image Retrieval
8%
Spatial Relation
8%
Internet-Of-Things
8%
Occlusion Problem
8%
Keyphrases
Object Detection
33%
Vehicle Detection
30%
Occlusion
22%
Sparse Representation
20%
Lighting Conditions
19%
Lighting Changes
19%
Event Analysis
17%
License Plate
17%
Time Order
16%
Symmelet
16%
Different Lighting
15%
Deep Learning
14%
Process Optimization
14%
Symmetrical SURF
13%
Road Signs
13%
Pedestrian
13%
Triangulation
13%
Histogram
13%
License Plate Recognition
13%
Deformable
12%
Feature Pyramid Network
12%
Classification Scheme
12%
Moving Object Detection
12%
Vehicle Make Recognition
11%
Vehicle Recognition
11%
Vehicle Classification
11%
Cross-attention
11%
Matching Pairs
11%
Neural Architecture Search
11%
Motion Features
11%
Vehicle Color Recognition
11%
Eigen
11%
Few-shot Learning
11%
Multiplicity Problem
10%
Recognition System
10%
Video Sequences
10%
Background Subtraction
10%
Morphology-based
10%
Concatenated
10%
Edge-based
10%
Key Posture
9%
Reverse-time
9%
Color Correction
9%
Multi-object Tracking
9%
Vehicle Colors
9%
Video Retrieval
9%
Wavelet Basis
9%
Multiple Persons
9%
Air-writing
9%
Vehicle Tracking
9%