跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
查看斯高帕斯 (Scopus) 概要
黃 春融
教授
資訊工程學系
電話
03-5712121 # 54790
電子郵件
crhuang
cs.nycu.edu
tw
網站
http://cvml.cs.nchu.edu.tw/biography.html
h-index
h10-index
h5-index
1051
引文
19
h-指數
按照存儲在普爾(Pure)的出版物數量及斯高帕斯(Scopus)引文計算。
273
引文
9
h-指數
按照存儲在普爾(Pure)的出版物數量及斯高帕斯(Scopus)引文計算。
182
引文
7
h-指數
按照存儲在普爾(Pure)的出版物數量及斯高帕斯(Scopus)引文計算。
2004
2024
每年研究成果
概覽
指紋
網路
研究成果
(66)
類似的個人檔案
(1)
指紋
查看啟用 Chun-Rong Huang 的研究主題。這些主題標籤來自此人的作品。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Surveillance Video
72%
Endoscopic Image
45%
Foreground Object
44%
State-of-the-art Techniques
42%
Sparse Representation
41%
Background Modeling
36%
Deep Learning Methods
30%
Spatial Face Context
27%
Video Synopsis
27%
Histopathological Images
27%
Group Photos
25%
Convolutional Neural Network
22%
Histogram
22%
Face Alignment
20%
Feature Selection
18%
Shot Change Detection
18%
Keypoint Matching
18%
Face Descriptor
18%
Internet Surveillance
18%
Unaligned
18%
Image Matching
18%
Support Vector Machine
18%
Object Tracking
18%
Local Descriptor
18%
Binary Descriptor
18%
Video Summarization
18%
Driver Monitoring System
18%
Kinematics
18%
Facial Image
18%
Vision Transformer
18%
Dichromate
18%
Cancer Risk Prediction
18%
Focal Modulation
18%
Gastric Intestinal Metaplasia
18%
Abnormal Driving Behavior
16%
Feature Network
16%
Training Samples
16%
Trajectory Clustering
15%
Deep Ensemble
15%
Neural Network
15%
Video Frames
14%
Different Fields of View
14%
Transformer
14%
Decoder
13%
Content Summarization
13%
Health Systems
13%
Contrastive Learning
13%
Background Subtraction
13%
Disease Diagnosis
12%
Training Data
12%
Computer Science
Experimental Result
100%
surveillance video
75%
Foreground Object
51%
Deep Learning Method
50%
background modeling
32%
Sparse Representation
32%
Convolutional Neural Network
28%
Artificial Intelligence
24%
Supervised Method
20%
Training Data
20%
Detection Rate
20%
Deep Feature
18%
Video Summarization
18%
Online Surveillance
18%
Image Matching
18%
Background Model
18%
Background Subtraction
18%
Temporal Constraint
18%
Image Classification
18%
Content Analysis
18%
Local Descriptor
18%
Vision Transformer
18%
facial image
18%
Segmentation Map
18%
Graph Matching
16%
Support Vector Machine
16%
Segmentation Method
15%
Subnetwork
15%
Object Recognition
13%
Contrastive Learning
13%
Parametric Model
13%
Affinity Propagation
13%
Diffusion Model
12%
Image Analysis
12%
Image Content
11%
Training Sample
11%
Visual Surveillance
10%
Annotation
10%
Ensemble Learning
10%
Alternating Direction Method of Multipliers
9%
Particle Filter
9%
Gender Recognition
9%
Background Information
9%
Probability Estimation
9%
Tracking Object
9%
Fundamental Matrix
9%
Representation Method
9%
Histopathological Image
9%
Instance Segmentation
9%
Sparsity
9%