跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
查看斯高帕斯 (Scopus) 概要
水 敬心
助理教授
運輸與物流管理學系
電話
+886-3-5712121 Ext: 57217
電子郵件
csshui
nycu.edu
tw
h-index
h10-index
h5-index
478
引文
6
h-指數
按照存儲在普爾(Pure)的出版物數量及斯高帕斯(Scopus)引文計算。
478
引文
6
h-指數
按照存儲在普爾(Pure)的出版物數量及斯高帕斯(Scopus)引文計算。
136
引文
3
h-指數
按照存儲在普爾(Pure)的出版物數量及斯高帕斯(Scopus)引文計算。
2015
2024
每年研究成果
概覽
指紋
網路
計畫
(5)
研究成果
(11)
類似的個人檔案
(6)
指紋
查看啟用 Chin Sum Shui 的研究主題。這些主題標籤來自此人的作品。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Bike Repositioning Problem
82%
Artificial Bee Colony Algorithm
44%
Bike
31%
Bike Path
31%
Bike-sharing System
29%
Hong Kong
25%
Planning Problem
24%
Genetic Algorithm
24%
Demand Coverage
24%
Two-objective
23%
Ferry
20%
Ride-hailing
20%
Bicycle-sharing Service
20%
Service Planning
20%
Public Bicycle
20%
Drone Trajectory
20%
Truck-drone
20%
Multi-vehicle
20%
Bike Network Design
20%
Free-floating Carsharing
20%
Electric Car Sharing
20%
Car-sharing System
20%
Design Problems
20%
Budget Constraint
20%
Modified Artificial Bee Colony Algorithm
20%
Coverage Constraints
20%
Algorithm Approach
20%
Service Time
20%
Dynamic Relocation
20%
Delivery Networks
20%
Vehicle Dynamics
20%
In Tandem
20%
Trajectory Planning
20%
Vehicle Charging
20%
Cycling Demand
20%
Unmet Demand
18%
Bike Stations
17%
Total Demand
17%
Island Communities
15%
Occupancy
15%
Travel Time
14%
CO2 Emission Cost
13%
Computer Science
Sharing System
100%
Artificial Bee Colony Algorithm
82%
Design Problem
41%
Budget Constraint
41%
Mixed-Integer Linear Programming
41%
Decision-Making
20%
Case Study
20%
Network Design
20%
Programming Model
20%
Efficient Algorithm
20%
Feasible Solution
20%
Numerical Example
20%
Computation Time
20%
Local Search Algorithm
20%
hybrid genetic algorithm
20%
Research Direction
20%
Objective Function
20%
Quality Solution
20%
Trajectory Planning
20%
Solution Quality
15%
Realism
10%
Practical Implication
10%
Service Duration
10%
Search Procedure
10%
Network Topology
10%
Matheuristics
10%
Information and Communication Technologies
10%
Cost Saving
10%
Planning Process
10%
Dynamic Nature
6%
Operating Cost
5%
Mixed Integer Programming
5%
Computational Experiment
5%
Routing Problem
5%
Engineering
Genetic Algorithm
44%
Solution Algorithm
41%
Design Problem
34%
Nodes
34%
Illustrates
29%
Selected Node
24%
Numerical Study
24%
Subproblem
22%
Computing Time
20%
Decision Level
20%
Mixed-Integer Linear Programming
20%
Directional
20%
Operation Period
20%
Mixed-Integer Linear Programming Model
20%
Numerical Example
20%
Electric Vehicle
20%
Feasible Solution
20%
Service Time
20%
Linear Programming Problem
20%
Local Search
20%
Solution Method
17%
Process Planning
10%
Tactical Decision
10%
Truncation
6%
Setup Cost
6%
Dynamic Nature
6%
Applicability
6%