跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
查看斯高帕斯 (Scopus) 概要
劉 建良
教授
工業工程與管理學系
https://orcid.org/0000-0002-2724-7199
h-index
h10-index
h5-index
1754
引文
22
h-指數
按照存儲在普爾(Pure)的出版物數量及斯高帕斯(Scopus)引文計算。
1263
引文
18
h-指數
按照存儲在普爾(Pure)的出版物數量及斯高帕斯(Scopus)引文計算。
612
引文
11
h-指數
按照存儲在普爾(Pure)的出版物數量及斯高帕斯(Scopus)引文計算。
2002
2024
每年研究成果
概覽
指紋
網路
計畫
(11)
研究成果
(69)
獎項
(2)
類似的個人檔案
(6)
指紋
查看啟用 Chien-Liang Liu 的研究主題。這些主題標籤來自此人的作品。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Computer Science
Experimental Result
100%
Deep Learning Method
34%
Labeled Example
25%
Attention (Machine Learning)
25%
Deep Reinforcement Learning
22%
Machine Learning
22%
Learning System
22%
Ontology
20%
Data Instance
19%
Imbalanced Data
19%
Job Shop Scheduling Problems
19%
Deep Neural Network
15%
Multivariate Time Series
15%
Minority Class
15%
Unlabeled Example
14%
Real Data Sets
14%
Deep Learning Model
13%
Machine Learning Algorithm
12%
Application Domain
12%
Domain Name System
12%
Generation Model
12%
Text Classification
12%
Recommendation Accuracy
12%
Learning Approach
12%
Predictive Model
12%
Extreme Gradient Boosting
12%
Few-Shot Learning
12%
Convolutional Neural Network
12%
Objective Function
12%
System Management
11%
Feature Extraction
11%
Unlabeled Data
11%
Classification Task
10%
Classification Algorithm
10%
Data Mining
10%
Classification Performance
10%
Gradient Descent
9%
Collaborative Filtering
9%
Convergence Theorem
9%
Recommender Systems
9%
Global Convergence
9%
Supervised Learning
9%
Representation Learning
9%
Time Series Data
8%
Random Decision Forest
8%
Clustering Algorithm
8%
Sampling Technique
8%
Predictive Accuracy
8%
Gibbs Free Energy
8%
Graph Neural Network
7%
Keyphrases
Deep Learning
29%
Deep Learning Model
24%
Deep Reinforcement Learning (deep RL)
20%
Predictive Models
18%
Machine Learning
18%
Imbalanced Data
17%
Job Shop Scheduling Problem
16%
Deep Neural Network
15%
Attention Mechanism
15%
K-means
14%
Writing Systems
13%
Chinese Restaurant Process
13%
Minority Class
13%
Prediction Accuracy
12%
Inherited Arrhythmia
12%
Universum
12%
Ontology
12%
Domain Name System
12%
Early Classification
12%
Multivariate Time Series
12%
Sparse Coding
12%
Liver Transplantation
12%
Brugada Syndrome
12%
Learning Sequence
12%
Acute Kidney Injury
12%
Few-shot Learning
12%
Dynamic Job Shop Scheduling Problem
12%
Network Reinforcement
12%
Popular
11%
System Management
11%
XGBoost
11%
Convolutional Neural Network
11%
Feature Representation
11%
Application Domain
10%
Learning-based
10%
Ensemble Learning
9%
Random Forest
9%
Latent Factor Model
9%
Recommendation Accuracy
9%
Physiological Measurement
9%
Risk Prediction
9%
Nonrecovery
9%
Metric Learning
9%
Graph Neural Network
9%
Feature Extraction
9%
Generation Model
9%
Synthetic Samples
8%
State-of-the-art Techniques
8%
Optimization Problem
8%
Unifying Framework
7%