跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
企業管理碩士學位學程
國立陽明交通大學
管理學院
電話
+886-3-5731825
電子郵件
nctugmba@g2.nctu.edu.tw
網站
https://gmba.nctu.edu.tw/
概覽
指紋
網路
人員
(2)
研究成果
(5)
研究成果
每年研究成果
2018
2018
2020
2021
2021
23
引文
2
h-指數
4
Article
1
Conference contribution
每年研究成果
每年研究成果
5結果
出版年份,標題
(降序)
出版年份,標題
(升序)
標題
類型
搜尋結果
2021
How SERU production system improves manufacturing flexibility and firm performance: an empirical study in China
Liu, C.
,
Li, Z.
,
Tang, J.
,
Wang, X.
&
Yao, M-J.
,
1月 2021
,
於:
Annals of Operations Research.
26 p.
研究成果
:
Article
›
同行評審
Manufacturing Flexibility
100%
Manufacturing Firms
63%
Skilled Workers
59%
Firm Performance
58%
Worker Turnover
48%
15
引文 斯高帕斯(Scopus)
The Joint Replenishment Problem with Cycle Time Constraints under General-Integer Policy
Lin, Y. L.
&
Yao, M. J.
,
19 5月 2021
,
2021 International Conference on Optimization and Applications, ICOA 2021.
Institute of Electrical and Electronics Engineers Inc.
, 9442642. (2021 International Conference on Optimization and Applications, ICOA 2021).
研究成果
:
Conference contribution
›
同行評審
Policy
100%
Integer
53%
Storage Capacity
50%
Capacity Constraints
48%
Horizon
35%
2020
An integrated algorithm for solving multi-customer joint replenishment problem with districting consideration
Yao, M-J.
,
Lin, J. Y.
,
Lin, Y. L.
&
Fang, S. C.
,
6月 2020
,
於:
Transportation Research Part E: Logistics and Transportation Review.
138
, 101896.
研究成果
:
Article
›
同行評審
Joint Replenishment
100%
customer
59%
Integrated
39%
Logistics
30%
Third-party Logistics
27%
8
引文 斯高帕斯(Scopus)
The joint replenishment problem with trade credits
Lin, J. Y.
&
Yao, M-J.
,
1 2月 2020
,
於:
Journal of Global Optimization.
76
,
2
,
p. 347-382
36 p.
研究成果
:
Article
›
同行評審
Trade Credit
100%
Joint Replenishment
85%
Policy
42%
Customers
29%
Complexity Analysis
18%
2018
SOLVING THE OPTIMAL RESOURCE ALLOCATION IN MULTIMODAL STOCHASTIC ACTIVITY NETWORKS USING AN OPTIMAL COMPUTING BUDGET ALLOCATION TECHNIQUE
Lin, J. Y.
,
Yao, M-J.
&
Chu, Y-H.
,
7月 2018
,
於:
Pacific journal of optimization.
14
,
4
,
p. 595-619
25 p.
研究成果
:
Article
›
同行評審
Resource Allocation
100%
Optimal Allocation
98%
Genetic Algorithm
82%
Resource allocation
64%
Genetic algorithms
53%