Abstract
Accumulation of transition metals has been suggested to be responsible for the deteriorated nigrostriatal dopaminergic system in Parkinson's patients. In the present study, the mechanism underlying the zinc-induced neurotoxicity was investigated in the nigrostriatal dopaminergic system in vivo. Our 6-methoxy-8-paratoluene sulfonamide quinoline fluorescence study showed zinc translocation in the infused nigral cells after intranigral infusion of zinc. Furthermore, lipid peroxidation in the zinc-infused substantia nigra was consistently elevated 4 h to 7 d after the infusion. At the same time, an abrupt increase in cytosolic cytochrome c content in the infused substantia nigra was observed 4 h after zinc infusion and gradually decreased to basal levels 7 d after infusion. Both TUNEL-positive neurons and DNA fragmentation, indicatives of apoptosis, were detected in the zinc-infused substantia nigra. Furthermore, striatal dopamine content was reduced 7 d after the infusion. In attempt to prevent zinc-induced neurotoxicity, vitamin D3 was systemically administered. Zinc-induced increases in lipid peroxidation and cytosolic cytochrome c in the infused substantia nigra were prevented by this treatment. Moreover, zinc-induced reduction in striatal dopamine content was attenuated after vitamin D3 treatment. Our in vivo data suggest that zinc-induced oxidative stress may result in apoptosis followed by reduced dopaminergic function in the nigrostriatal dopaminergic system. Furthermore, vitamin D3 prevented zinc-induced oxidative injuries in the rat brain.
Original language | English |
---|---|
Pages (from-to) | 1416-1425 |
Number of pages | 10 |
Journal | Free Radical Biology and Medicine |
Volume | 34 |
Issue number | 11 |
DOIs | |
State | Published - 1 Jun 2003 |
Keywords
- Apoptosis
- Cytochrome c
- Free radicals
- Oxidative stress
- Vitamin D3
- Zinc