Willingness optimization for social group activity

Hong-Han Shuai*, De Nian Yang, Philip S. Yu, Ming Syan Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Studies show that a person is willing to join a social group activity if the activity is interesting, and if some close friends also join the activity as companions. The literature has demonstrated that the interests of a person and the social tightness among friends can be effectively derived and mined from social networking websites. However, even with the above two kinds of information widely available, social group activities still need to be coordinated manually, and the process is tedious and time-consuming for users, especially for a large social group activity, due to complications of social connectivity and the diversity of possible interests among friends. To address the above important need, this paper proposes to automatically select and recommend potential attendees of a social group activity, which could be very useful for social networking websites as a value-added service. We first formulate a new problem, named Willingness mAximization for Social grOup (WASO). This paper points out that the solution obtained by a greedy algorithm is likely to be trapped in a local optimal solution. Thus, we design a new randomized algorithm to effectively and efficiently solve the problem. Given the available computational budgets, the proposed algorithm is able to optimally allocate the resources and find a solution with an approximation ratio. We implement the proposed algorithm in Facebook, and the user study demonstrates that social groups obtained by the proposed algorithm significantly outperform the solutions manually configured by users.

Original languageEnglish
Pages (from-to)253-264
Number of pages12
JournalProceedings of the VLDB Endowment
Volume7
Issue number4
DOIs
StatePublished - 1 Jan 2013

Fingerprint

Dive into the research topics of 'Willingness optimization for social group activity'. Together they form a unique fingerprint.

Cite this