TY - GEN
T1 - Where Will Players Move Next? Dynamic Graphs and Hierarchical Fusion for Movement Forecasting in Badminton
AU - Chang, Kai Shiang
AU - Wang, Wei Yao
AU - Peng, Wen Chih
N1 - Publisher Copyright:
Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2023/6/27
Y1 - 2023/6/27
N2 - Sports analytics has captured increasing attention since analysis of the various data enables insights for training strategies, player evaluation, etc. In this paper, we focus on predicting what types of returning strokes will be made, and where players will move to based on previous strokes. As this problem has not been addressed to date, movement forecasting can be tackled through sequence-based and graph-based models by formulating as a sequence prediction task. However, existing sequence-based models neglect the effects of interactions between players, and graph-based models still suffer from multifaceted perspectives on the next movement. Moreover, there is no existing work on representing strategic relations among players’ shot types and movements. To address these challenges, we first introduce the procedure of the Player Movements (PM) graph to exploit the structural movements of players with strategic relations. Based on the PM graph, we propose a novel Dynamic Graphs and Hierarchical Fusion for Movement Forecasting model (DyMF) with interaction style extractors to capture the mutual interactions of players themselves and between both players within a rally, and dynamic players’ tactics across time. In addition, hierarchical fusion modules are designed to incorporate the style influence of both players and rally interactions. Extensive experiments show that our model empirically outperforms both sequence- and graph-based methods and demonstrate the practical usage of movement forecasting. Code is available at https://github.com/wywyWang/CoachAIProjects/tree/main/Movement%20Forecasting.
AB - Sports analytics has captured increasing attention since analysis of the various data enables insights for training strategies, player evaluation, etc. In this paper, we focus on predicting what types of returning strokes will be made, and where players will move to based on previous strokes. As this problem has not been addressed to date, movement forecasting can be tackled through sequence-based and graph-based models by formulating as a sequence prediction task. However, existing sequence-based models neglect the effects of interactions between players, and graph-based models still suffer from multifaceted perspectives on the next movement. Moreover, there is no existing work on representing strategic relations among players’ shot types and movements. To address these challenges, we first introduce the procedure of the Player Movements (PM) graph to exploit the structural movements of players with strategic relations. Based on the PM graph, we propose a novel Dynamic Graphs and Hierarchical Fusion for Movement Forecasting model (DyMF) with interaction style extractors to capture the mutual interactions of players themselves and between both players within a rally, and dynamic players’ tactics across time. In addition, hierarchical fusion modules are designed to incorporate the style influence of both players and rally interactions. Extensive experiments show that our model empirically outperforms both sequence- and graph-based methods and demonstrate the practical usage of movement forecasting. Code is available at https://github.com/wywyWang/CoachAIProjects/tree/main/Movement%20Forecasting.
UR - http://www.scopus.com/inward/record.url?scp=85167972933&partnerID=8YFLogxK
U2 - 10.1609/aaai.v37i6.25855
DO - 10.1609/aaai.v37i6.25855
M3 - Conference contribution
AN - SCOPUS:85167972933
T3 - Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
SP - 6998
EP - 7005
BT - AAAI-23 Technical Tracks 6
A2 - Williams, Brian
A2 - Chen, Yiling
A2 - Neville, Jennifer
PB - AAAI press
T2 - 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Y2 - 7 February 2023 through 14 February 2023
ER -