Viral channel forming proteins - Modeling the target

Wolfgang B. Fischer, Hao Jen Hsu

Research output: Contribution to journalReview articlepeer-review

34 Scopus citations

Abstract

The cellular and subcellular membranes encounter an important playground for the activity of membrane proteins encoded by viruses. Viral membrane proteins, similar to their host companions, can be integral or attached to the membrane. They are involved in directing the cellular and viral reproduction, the fusion and budding processes. This review focuses especially on those integral viral membrane proteins which form channels or pores, the classification to be so, modeling by in silico methods and potential drug candidates. The sequence of an isolate of Vpu from HIV-1 is aligned with host ion channels and a toxin. The focus is on the alignment of the transmembrane domains. The results of the alignment are mapped onto the 3D structures of the respective channels and toxin. The results of the mapping support the idea of a 'channel-pore dualism' for Vpu.

Original languageEnglish
Pages (from-to)561-571
Number of pages11
JournalBiochimica et Biophysica Acta - Biomembranes
Volume1808
Issue number2
DOIs
StatePublished - Feb 2011

Keywords

  • Assembly
  • Docking
  • Ion channel
  • Sequence alignment
  • Toxin
  • Viral channel protein

Fingerprint

Dive into the research topics of 'Viral channel forming proteins - Modeling the target'. Together they form a unique fingerprint.

Cite this