Abstract
In this study, two intelligent classifiers, the AdaBoost-based incremental functional neural fuzzy classifier (AIFNFC) and the AdaBoost-based fixed functional neural fuzzy classifier (AFFNFC), are proposed for solving the classification problems. The AIFNFC approach will increase the amount of functional neural fuzzy classifiers based on the corresponding error during the training phase; while the AFNFC approach is equipped with a fixed amount of functional neural fuzzy classifiers. Then, the weights of AdaBoost procedure are assigned for classifiers. The proposed methods are applied to different classification benchmarks. Results of this study demonstrate the effectiveness of the proposed AIFNFC and AFFNFC methods.
Original language | English |
---|---|
Article number | 05004 |
Journal | MATEC Web of Conferences |
Volume | 201 |
DOIs | |
State | Published - 14 Sep 2018 |
Event | 3rd International Conference on Inventions, ICI 2017 - Sun Moon Lake, Taiwan Duration: 29 Sep 2017 → 2 Oct 2017 |