Abstract
Emerging nanoscale devices, including memristors, have been extensively studied to implement biological synaptic functions such as learning and plasticity, which are the fundamental building blocks of brain-inspired neuromorphic computing. The memristor with analog switching ability exhibits linear tuning of weight during neural network training is a desirable synaptic device behavior. The importance of inserting a HfOx sandwiched layer in a TaOx/HfOx/TaOx memristor is to achieve analog set/reset operation along with improved spatial/temporal switching uniformity. The optimal resistive switching (RS) behavior can be attributed to asymmetric oxygen vacancy distribution in the stacked structure leading to the formation of an hourglass-shaped conductive filament. Furthermore, confining filament formation/rapture in the narrow fixed region displays superior endurance characteristics (dc cycles >2000 and ac cycles > 106) and uniform resistive switching with the set (reset) voltage variation constrained to 1.8 (2.9) %. Paired-pulse facilitation (PPF), a form of short-term synaptic plasticity is stimulated to replicate bio-synapse behavior. The stable long-term potentiation (LTP) and depression (LTD) behavior for more than 1000 epochs (>105 pulses) with excellent symmetry and linearity is achieved with 50 ns voltage pulse stimulation. The pattern recognition accuracy of 93% was achieved for an image of size 10 × 10 pixels after 13 epochs by deploying 100 synapses in Hopfield Neural Network (HNN) simulation. This comprehensive study demonstrates that the HfOx-inserted TaOx memristor has tremendous potential for application in future neuromorphic computing.
Original language | English |
---|---|
Pages (from-to) | 16909-16917 |
Number of pages | 9 |
Journal | Ceramics International |
Volume | 49 |
Issue number | 11 |
DOIs | |
State | Published - 1 Jun 2023 |
Keywords
- Memristor
- Metal oxide
- Neuromorphic computing
- Oxygen vacancy
- Resistive switching