Abstract
Transportation mode (TM) detection is one of the activity recognition tasks in ubiquitous computing. A number of previous studies have compared the performance of various classifiers for TM detection. However, the current study is the first work aiming to understand how TM detection performance is impacted by how the recorded location traces are segmented into data segments for training a classifier. In our preliminary experiments we examine three trace segmentation (TS) methods-Uniform Duration (UniDur), Uniform Number of Location Points (UniNP), and Uniform Distance (UniDis)-and compare their performance on detecting different transportation modes. The results indicate that while driving can be more accurately detected by using UniDis method, walking and bus can be more accurately detected by using UniDur method. This suggests that choosing a right TS method for training a TM classifier is an important step to accurately detect particular transportation modes.
Original language | English |
---|---|
Title of host publication | UbiComp'12 - Proceedings of the 2012 ACM Conference on Ubiquitous Computing |
Publisher | Association for Computing Machinery |
Pages | 625-626 |
Number of pages | 2 |
ISBN (Print) | 9781450312240 |
DOIs | |
State | Published - 2012 |
Event | 14th International Conference on Ubiquitous Computing, UbiComp 2012 - Pittsburgh, PA, United States Duration: 5 Sep 2012 → 8 Sep 2012 |
Publication series
Name | UbiComp'12 - Proceedings of the 2012 ACM Conference on Ubiquitous Computing |
---|
Conference
Conference | 14th International Conference on Ubiquitous Computing, UbiComp 2012 |
---|---|
Country/Territory | United States |
City | Pittsburgh, PA |
Period | 5/09/12 → 8/09/12 |
Keywords
- Activity recognition
- Performance
- Trace segmentation
- Transportation
- Ubicomp