TY - GEN
T1 - Uncertainty Awareness for Predicting Noisy Stock Price Movements
AU - Lien, Yun Hsuan
AU - Lin, Yu Syuan
AU - Wang, Yu Shuen
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2023
Y1 - 2023
N2 - Predicting stock price movements is challenging because financial markets are noisy – signals and patterns in different periods are dissimilar and often conflict with each other. Consequently, irrespective of whether the price rises or falls, none of the previous methods achieve high prediction accuracy in this binary classification task. In this study, we consider aleatoric uncertainty and model uncertainty when training neural networks to forecast stock price movements. Specifically, aleatoric uncertainty is known as statistical uncertainty. It indicates that similar historical price trajectories may not lead to similar future price movements. On the other hand, model uncertainty is caused by the model’s mathematical structures and parameter values, which can be used to estimate whether the models are familiar with the testing sample. Considering that most of the existing uncertainty estimation methods focus on model uncertainty, we transform the aleatoric uncertainty in financial markets to model uncertainty by removing samples with similar historical price trajectories and different future movements. The Bayesian neural network is then adopted to estimate the model uncertainty during inference. Experiment results demonstrated that the networks achieved high accuracy when they were certain about their predictions.
AB - Predicting stock price movements is challenging because financial markets are noisy – signals and patterns in different periods are dissimilar and often conflict with each other. Consequently, irrespective of whether the price rises or falls, none of the previous methods achieve high prediction accuracy in this binary classification task. In this study, we consider aleatoric uncertainty and model uncertainty when training neural networks to forecast stock price movements. Specifically, aleatoric uncertainty is known as statistical uncertainty. It indicates that similar historical price trajectories may not lead to similar future price movements. On the other hand, model uncertainty is caused by the model’s mathematical structures and parameter values, which can be used to estimate whether the models are familiar with the testing sample. Considering that most of the existing uncertainty estimation methods focus on model uncertainty, we transform the aleatoric uncertainty in financial markets to model uncertainty by removing samples with similar historical price trajectories and different future movements. The Bayesian neural network is then adopted to estimate the model uncertainty during inference. Experiment results demonstrated that the networks achieved high accuracy when they were certain about their predictions.
KW - Aleatoric uncertainty
KW - Model uncertainty
KW - Stock price movement prediction
KW - Uncertainty quantification
UR - http://www.scopus.com/inward/record.url?scp=85150969658&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-26422-1_10
DO - 10.1007/978-3-031-26422-1_10
M3 - Conference contribution
AN - SCOPUS:85150969658
SN - 9783031264214
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 154
EP - 169
BT - Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Proceedings
A2 - Amini, Massih-Reza
A2 - Canu, Stéphane
A2 - Fischer, Asja
A2 - Guns, Tias
A2 - Kralj Novak, Petra
A2 - Tsoumakas, Grigorios
PB - Springer Science and Business Media Deutschland GmbH
T2 - 22nd Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2022
Y2 - 19 September 2022 through 23 September 2022
ER -