Abstract
In this study, we carried out 800-nm pump and ultra-broadband mid-infrared (MIR) probe spectroscopy with high time-resolution (70 fs) in bulk Ge. By fitting the time-resolved difference reflection spectra [δR(ω)/R(ω)] with the Drude model in the 200-5000 cm-1 region, the time-dependent plasma frequency and scattering rate have been obtained. Through the calculation, we can further get the time-dependent photoexcited carrier concentration and carrier mobility. The Auger recombination essentially dominates the fast relaxation of photoexcited carriers within 100 ps followed by slow relaxation due to diffusion. Additionally, a novel oscillation feature is clearly found in time-resolved difference reflection spectra around 2000 cm-1 especially for high pump fluence, which is the Lorentz oscillation lasting for about 20 ps due to the Coulomb force exerted just after the excitation.
Original language | American English |
---|---|
Article number | 40492 |
Journal | Scientific reports |
Volume | 7 |
DOIs | |
State | Published - 11 Jan 2017 |