Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers

Misty D. Rowe, Chia Chih Chang, Douglas H. Thamm, Susan L. Kraft, Joseph F. Harmon, Andrew P. Vogt, Brent S. Sumerlin, Stephen G. Boyes

Research output: Contribution to journalArticlepeer-review

112 Scopus citations


A novel surface modification technique was employed to produce a polymer modified positive contrast agent nanoparticle through attachment of well-defined homopolymers synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. A range of RAFT homopolymers including poly[N-(2-hydroxypropyl) methacrylamide], poly(N-isopropylacrylamide), polystyrene, poly(2-(dimethylamino)ethyl acrylate), poly(((poly)ethylene glycol) methyl ether acrylate), and poly(acrylic acid) were synthesized and subsequently used to modify the surface of gadolinium (Gd) metal-organic framework (MOF) nanoparticles. Employment of a trithiocarbonate RAFT agent allowed for reduction of the polymer end groups under basic conditions to thiolates, providing a means of homopolymer attachment through vacant orbitais on the Gd3+ ions at the surface of the Gd MOF nanoparticles. Magnetic resonance imaging (MRI) confirmed the relaxivity rates of these novel polymer modified structures were easily tuned by changes in the molecular weight and chemical structures of the polymers. When a hydrophilic polymer was used for modification of the Gd MOF nanoparticles, an increase in molecular weight of the polymer provided a respective increase in the longitudinal relaxivity. These relaxivity values were significantly higher than both the unmodified Gd MOF nanoparticles and the clinically employed contrast agents, Magnevist and Multihance, which confirmed the construct's ability to be utilized as a positive contrast nanoparticle agent in MRI. Further characterization confirmed that increased hydrophobicity of the polymer coating on the Gd MOF nanoparticles yielded minimal changes in the longitudinal relaxivity properties but large increases in the transverse relaxivity properties in the MRI.

Original languageEnglish
Pages (from-to)9487-9499
Number of pages13
Issue number16
StatePublished - 18 Aug 2009


Dive into the research topics of 'Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers'. Together they form a unique fingerprint.

Cite this