Abstract
This Letter presents a tunable window device based on microscopic wrinkling of a transparent elastomeric surface. "Crack-free" microscopic wrinkling of a 50-nm ZnO thin film is possible on a highly adhesive acrylic elastomer membrane (VHB 4910) upon partial release from a large radial pre-stretch of membrane. This ZnO-based tunable window device demonstrates reversible tunability between transparent and translucent states. At zero compression with a flat surface, the device is transparent with a 93% in-line transmittance at 550-nm wavelength. At 14% radial compression with wrinkled surface, the device appears translucent with a 3% in-line transmittance. Analysis shows that a large amplitude and a small wavelength of transparent micro-wrinkles are good for refracting light diffusely. This method and material system are promising to make a low-cost, high-performance smart window.
Original language | English |
---|---|
Pages (from-to) | 4433-4436 |
Number of pages | 4 |
Journal | Optics Letters |
Volume | 41 |
Issue number | 19 |
DOIs | |
State | Published - 1 Oct 2016 |