Tunable complex magnetic states of epitaxial core-shell metal oxide nanocrystals fabricated by the phase decomposition method

S. J. Chang, T. N. Lam, C. Y. Yang, Y. L. Chen, Y. H. Chu, Y. L. Chueh, Y. C. Tseng

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We report on the successful fabrication of epitaxial-discrete CoxFe3-xO4/CoO magnetic nanostructures on a SrTiO3 substrate as well as the results of a thorough investigation of the magnetic cross-reactions of the two phases in the vicinity of the epitaxial junction. These nanostructures were originally prepared as Fe3O4-CoO core-shell structures through the phase decomposition of bismuth perovskite precursors by pulsed-laser deposition. An antiphase boundary emerged during the structural/electronic transition from the CoO core to the Co1-xFe2+XO4 shell; this then developed into a ferrimagnetic/antiferromagnetic interface. Uncompensated spins (UCS) arose from the CoxFe3-xO4/CoO interface as a result of strong ferrimagnetic-antiferromagnetic interactions. A notable exchange bias as well as a significant exchange enhancement was observed owing to the UCS, which had a locking effect because of the decoupling of the Co1-xFe2+XO4/CoO reversal from the antiphase boundary. Control of the precursor ratio allowed for the fine-tuning of the Co1-xFe2+XO4 phase and the associated locking behaviors. This, in turn, allowed the anisotropy and coercivity of the nanostructures to be manipulated. Thus, we were able to create and thoroughly understand a complex epitaxial configuration with tunable structural and magnetic properties. This study should open new opportunities with regard to current magnetic oxide technology, which requires novel methods for pursuing extremity of controllable properties over an atomic landscape.

Original languageEnglish
Article number275001
Pages (from-to)1-8
Number of pages8
JournalJournal of Physics D: Applied Physics
Volume49
Issue number27
DOIs
StatePublished - 13 Jul 2016

Keywords

  • XMCD
  • magnetic oxide
  • switching field distribution

Fingerprint

Dive into the research topics of 'Tunable complex magnetic states of epitaxial core-shell metal oxide nanocrystals fabricated by the phase decomposition method'. Together they form a unique fingerprint.

Cite this