TY - JOUR
T1 - Tumor necrosis factor-α-mediated protein kinases in regulation of scavenger receptor and foam cell formation on macrophage
AU - Hsu, Hsien Yeh
AU - Twu, Yuh Ching
PY - 2000/12/29
Y1 - 2000/12/29
N2 - We previously reported tumor necrosis factor-α (TNF) modulates transcriptional and post-transcriptional down-regulation of macrophage scavenger receptor (MSR) (Hsu, H. Y., Nicholson, A. C., and Hajjar, D. P. (1996) J. Biol. Chem. 271, 7767-7773); however, TNF-mediated signaling mechanisms are unknown. Here, we demonstrate that ligation of TNF receptor stimulates activity of p21-activated protein kinase (PAK) and mitogen-activated protein kinases (MAPK) as follows: ERK, JNK, and p38 in murine macrophage J774A.1 cells. Upon activation of protein kinases (PK), TNF rapidly increases MSR message and protein: later it markedly reduces MSR expression. Studies using PK inhibitors and dominant negative constructs demonstrate phosphatidylinositol 3-kinase/Rac1/PAK/JNK and phosphatidylinositol 3-kinase/Rac1/PAK/p38 pathways contribute to important roles in the late stage of TNF down-regulation of MSR expression and taking up of OxLDL. Alternatively, the PKC/MEK1/ERK pathway in the early stage plays a significant role in up-regulation of the MSR gene. By using anti-TNF-R1 agonist antibody, we further confirm TNF-R1-mediated MAPK in regulation of MSR. Furthermore, in MSR gene promoter-driven luciferase reporter assays with TNF, PKC activator increases, but antioxidant N-acetylcysteine, PK inhibitors, and dominant negative constructs decrease luciferase activity in MSR gene promoter-transfected cells. Our current results show the first evidence of crucial roles for TNF-mediated MAPK pathways in the transcriptional regulation of MSR gene and increase MSR expression; in contrast, with TNF longer treatment the pathways down-regulate MSR and foam cell formation probably via post-transcriptional process.
AB - We previously reported tumor necrosis factor-α (TNF) modulates transcriptional and post-transcriptional down-regulation of macrophage scavenger receptor (MSR) (Hsu, H. Y., Nicholson, A. C., and Hajjar, D. P. (1996) J. Biol. Chem. 271, 7767-7773); however, TNF-mediated signaling mechanisms are unknown. Here, we demonstrate that ligation of TNF receptor stimulates activity of p21-activated protein kinase (PAK) and mitogen-activated protein kinases (MAPK) as follows: ERK, JNK, and p38 in murine macrophage J774A.1 cells. Upon activation of protein kinases (PK), TNF rapidly increases MSR message and protein: later it markedly reduces MSR expression. Studies using PK inhibitors and dominant negative constructs demonstrate phosphatidylinositol 3-kinase/Rac1/PAK/JNK and phosphatidylinositol 3-kinase/Rac1/PAK/p38 pathways contribute to important roles in the late stage of TNF down-regulation of MSR expression and taking up of OxLDL. Alternatively, the PKC/MEK1/ERK pathway in the early stage plays a significant role in up-regulation of the MSR gene. By using anti-TNF-R1 agonist antibody, we further confirm TNF-R1-mediated MAPK in regulation of MSR. Furthermore, in MSR gene promoter-driven luciferase reporter assays with TNF, PKC activator increases, but antioxidant N-acetylcysteine, PK inhibitors, and dominant negative constructs decrease luciferase activity in MSR gene promoter-transfected cells. Our current results show the first evidence of crucial roles for TNF-mediated MAPK pathways in the transcriptional regulation of MSR gene and increase MSR expression; in contrast, with TNF longer treatment the pathways down-regulate MSR and foam cell formation probably via post-transcriptional process.
UR - http://www.scopus.com/inward/record.url?scp=0034731303&partnerID=8YFLogxK
U2 - 10.1074/jbc.M003464200
DO - 10.1074/jbc.M003464200
M3 - Article
C2 - 10969071
AN - SCOPUS:0034731303
SN - 0021-9258
VL - 275
SP - 41035
EP - 41048
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 52
ER -