TY - GEN
T1 - Towards Understanding Cross Resolution Feature Matching for Surveillance Face Recognition
AU - Kuo, Chiawei
AU - Tsai, Yi Ting
AU - Shuai, Hong Han
AU - Yeh, Yi Ren
AU - Huang, Ching Chun
N1 - Publisher Copyright:
© 2022 ACM.
PY - 2022/10/10
Y1 - 2022/10/10
N2 - Cross-resolution face recognition (CRFR) in an open-set setting is a practical application for surveillance scenarios where low-resolution (LR) probe faces captured via surveillance cameras require being matched to a watchlist of high-resolution (HR) galleries. Although CRFR is to be of practical use, it sees a performance drop of more than 10% compared to that of high-resolution face recognition protocols. The challenges of CRFR are multifold, including the domain gap induced by the HR and LR images, the pose/texture variations, etc. To this end, this work systematically discusses possible issues and their solutions that affect the accuracy of CRFR. First, we explore the effect of resolution changes and conclude that resolution matching is the key for CRFR. Even simply downscaling the HR faces to match the LR ones brings a performance gain. Next, to further boost the accuracy of matching cross-resolution faces, we found that a well-designed super-resolution network, which can (a) represent the images continuously, is (b) suitable for real-world degradation kernel, (c) adaptive to different input resolutions, and (d) guided by an identity-preserved loss, is necessary to upsample the LR faces with discriminative enhancement. Here, the proposed identity-preserved loss plays the role of reconciling the objective discrepancy of super-resolution between human perception and machine recognition. Finally, we emphasize that removing the pose variations is an essential step before matching faces for recognition in the super-resolved feature space. Our method is evaluated on benchmark datasets, including SCface, cross-resolution LFW, and QMUL-Tinyface. The results show that the proposed method outperforms the SOTA methods by a clear margin and narrows the performance gap compared to the high-resolution face recognition protocol.
AB - Cross-resolution face recognition (CRFR) in an open-set setting is a practical application for surveillance scenarios where low-resolution (LR) probe faces captured via surveillance cameras require being matched to a watchlist of high-resolution (HR) galleries. Although CRFR is to be of practical use, it sees a performance drop of more than 10% compared to that of high-resolution face recognition protocols. The challenges of CRFR are multifold, including the domain gap induced by the HR and LR images, the pose/texture variations, etc. To this end, this work systematically discusses possible issues and their solutions that affect the accuracy of CRFR. First, we explore the effect of resolution changes and conclude that resolution matching is the key for CRFR. Even simply downscaling the HR faces to match the LR ones brings a performance gain. Next, to further boost the accuracy of matching cross-resolution faces, we found that a well-designed super-resolution network, which can (a) represent the images continuously, is (b) suitable for real-world degradation kernel, (c) adaptive to different input resolutions, and (d) guided by an identity-preserved loss, is necessary to upsample the LR faces with discriminative enhancement. Here, the proposed identity-preserved loss plays the role of reconciling the objective discrepancy of super-resolution between human perception and machine recognition. Finally, we emphasize that removing the pose variations is an essential step before matching faces for recognition in the super-resolved feature space. Our method is evaluated on benchmark datasets, including SCface, cross-resolution LFW, and QMUL-Tinyface. The results show that the proposed method outperforms the SOTA methods by a clear margin and narrows the performance gap compared to the high-resolution face recognition protocol.
KW - cross-resolution face recognition
KW - super-resolution
KW - surveillance face recognition
UR - http://www.scopus.com/inward/record.url?scp=85151162380&partnerID=8YFLogxK
U2 - 10.1145/3503161.3548402
DO - 10.1145/3503161.3548402
M3 - Conference contribution
AN - SCOPUS:85151162380
T3 - MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia
SP - 6706
EP - 6716
BT - MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia
PB - Association for Computing Machinery, Inc
T2 - 30th ACM International Conference on Multimedia, MM 2022
Y2 - 10 October 2022 through 14 October 2022
ER -