Toward enriched decoding of mandarin spontaneous speech

Yu Chih Deng, Yuan Fu Liao*, Yih Ru Wang, Sin Horng Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

A deep neural network (DNN)-based automatic speech recognition (ASR) method for enriched decoding of Mandarin spontaneous speech is proposed. It adopts an enhanced approach over the baseline model built with factored time delay neural networks (TDNN-f) and rescored with RNNLM to first building a baseline system composed of a TDNN-f acoustic model (AM), a trigram language model (LM), and a recurrent neural network language model (RNNLM) to generate a word lattice. It then sequentially incorporates a multi-task Part-of-Speech-RNNLM (POS-RNNLM), a hierarchical prosodic model (HPM), and a reduplication-word LM (RLM) into the decoding process by expanding the word lattice and performing rescoring to improve recognition performance and enrich the decoding output with syntactic parameters of POS and punctuation (PM), prosodic tags of word-juncture break types and syllable prosodic states, and an edited recognition text with reduplication words being eliminated. Experimental results on the Mandarin conversational dialogue corpus (MCDC) showed that SER, CER, and WER of 13.2 %, 13.9 %, and 19.1 % were achieved when incorporating the POS-RNNLM and HPM into the baseline system. They represented relative SER, CER, and WER reductions of 7.7 %, 7.9 % and 5.0 % as comparing with those of the baseline system. Futhermore, the use of the RLM resulted in additional 3 %, 4.6 %, and 4.5 % relative SER, CER, and WER reductions through eliminating reduplication words.

Original languageEnglish
Article number102983
JournalSpeech Communication
Volume154
DOIs
StatePublished - Oct 2023

Keywords

  • Disfluencies and paralinguistic phenomena
  • Hierarchical prosodic model
  • Mandarin conversational dialogue corpus
  • Part-of-speech language model
  • Reduplication-word language model
  • Spontaneous speech recognition

Fingerprint

Dive into the research topics of 'Toward enriched decoding of mandarin spontaneous speech'. Together they form a unique fingerprint.

Cite this