@inproceedings{baf7b9b4071b41f4b6b1e90b6a14e46a,
title = "Tight approximation for partial vertex cover with hard capacities",
abstract = "We consider the partial vertex cover problem with hard capacity constraints (Partial VC-HC) on hypergraphs. In this problem we are given a hypergraph G = (V,E) with a maximum edge size f and a covering requirement R. Each edge is associated with a demand, and each vertex is associated with a capacity and an (integral) available multiplicity. The objective is to compute a minimum vertex multiset such that at least R units of demand from the edges are covered by the capacities of the vertices in the multiset and the multiplicity of each vertex does not exceed its available multiplicity. In this paper we present an f-Approximation for this problem, improving over a previous result of (2f + 2)(1 +) by Cheung et al to the tight extent possible. Our new ingredient of this work is a generalized analysis on the extreme points of the natural LP, developed from previous works, and a strengthened LP lower-bound obtained for the optimal solutions.",
keywords = "Approximation algorithm, Capacitated vertex cover, Hard capacities",
author = "Shiau, {Jia Yau} and Kao, {Mong Jen} and Lin, {Ching Chi} and Lee, {D. T.}",
year = "2017",
month = dec,
day = "1",
doi = "10.4230/LIPIcs.ISAAC.2017.64",
language = "English",
series = "Leibniz International Proceedings in Informatics, LIPIcs",
publisher = "Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing",
editor = "Takeshi Tokuyama and Yoshio Okamoto",
booktitle = "28th International Symposium on Algorithms and Computation, ISAAC 2017",
address = "Germany",
note = "null ; Conference date: 09-12-2017 Through 22-12-2017",
}