The Effects of Classification Method and Electrode Configuration on EEG-based Silent Speech Classification

Changjie Pan, Ying Hui Lai, Fei Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

The effective classification for imagined speech and intended speech is of great help to the development of speech-based brain-computer interfaces (BCIs). This work distinguished imagined speech and intended speech by employing the cortical EEG signals recorded from scalp. EEG signals from eleven subjects were recorded when they produced Mandarin-Chinese monosyllables in imagined speech and intended speech, and EEG features were classified by the common spatial pattern, time-domain, frequency-domain and Riemannian manifold based methods. The classification results indicated that the Riemannian manifold based method yielded the highest classification accuracy of 85.9% among the four classification methods. Moreover, the classification accuracy with the left-only brain electrode configuration was close to that with the whole brain electrode configuration. The findings of this work have potential to extend the output commands of silent speech interfaces.

Original languageEnglish
Title of host publication43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages131-134
Number of pages4
ISBN (Electronic)9781728111797
DOIs
StatePublished - 2021
Event43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021 - Virtual, Online, Mexico
Duration: 1 Nov 20215 Nov 2021

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
Country/TerritoryMexico
CityVirtual, Online
Period1/11/215/11/21

Fingerprint

Dive into the research topics of 'The Effects of Classification Method and Electrode Configuration on EEG-based Silent Speech Classification'. Together they form a unique fingerprint.

Cite this