The comprehensive machine learning analytics for heart failure

Chao Yu Guo*, Min Yang Wu, Hao Min Cheng

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Background: Early detection of heart failure is the basis for better medical treatment and prognosis. Over the last decades, both prevalence and incidence rates of heart failure have increased worldwide, resulting in a significant global public health issue. However, an early diagnosis is not an easy task because symptoms of heart failure are usually non-specific. Therefore, this study aims to develop a risk prediction model for incident heart failure through a machine learning-based predictive model. Although African Americans have a higher risk of incident heart failure among all populations, few studies have developed a heart failure risk prediction model for African Americans. Methods: This research implemented the Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression, support vector machine, random forest, and Extreme Gradient Boosting (XGBoost) to establish the Jackson Heart Study’s predictive model. In the analysis of real data, missing data are problematic when building a predictive model. Here, we evaluate predictors’ inclusion with various missing rates and different missing imputation strategies to discover the optimal analytics. Results: According to hundreds of models that we examined, the best predictive model was the XGBoost that included variables with a missing rate of less than 30 percent, and we imputed missing values by non-parametric random forest imputation. The optimal XGBoost machine demonstrated an Area Under Curve (AUC) of 0.8409 to predict heart failure for the Jackson Heart Study. Conclusion: This research identifies variations of diabetes medication as the most crucial risk factor for heart failure compared to the complete cases approach that failed to discover this phenomenon.

Original languageEnglish
Article number4943
JournalInternational journal of environmental research and public health
Issue number9
StatePublished - 1 May 2021


  • Heart failure
  • LASSO logistic regression
  • Machine learning
  • Prediction model
  • Random forest
  • Support vector machine
  • XGBoost


Dive into the research topics of 'The comprehensive machine learning analytics for heart failure'. Together they form a unique fingerprint.

Cite this