The best of both worlds: On exploiting bit-alterable NAND flash for lifetime and read performance optimization

Shuo Han Chen, Ming Chang Yang, Yuan Hao Chang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

With the emergence of bit-alterable 3D NAND flash, programming and erasing a flash cell at bit-level granularity have become a reality. Bit-level operations can benefit the high density, high bit-error-rate 3D NAND flash via realizing the "bit-level rewrite operation," which can refresh error bits at bit-level granularity for reducing the error correction latency and improving the read performance with minimal lifetime expense. Different from existing refresh techniques, bit-level operations can lower the lifetime expense via removing error bits directly without page-based rewrites. However, since bit-level rewrites may induce a similar amount of latency as conventional page-based rewrites and thus lead to low rewrite throughput, the efficiency of bit-level rewrites should be carefully considered. Such observation motivates us to propose a bit-level error removal (BER) scheme to derive the most-efficient way of utilizing the bit-level operations for both lifetime and read performance optimization. A series of experiments was conducted to demonstrate the capability of the BER scheme with encouraging results.

Original languageEnglish
Title of host publicationProceedings of the 56th Annual Design Automation Conference 2019, DAC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781450367257
DOIs
StatePublished - 2 Jun 2019
Event56th Annual Design Automation Conference, DAC 2019 - Las Vegas, United States
Duration: 2 Jun 20196 Jun 2019

Publication series

NameProceedings - Design Automation Conference
ISSN (Print)0738-100X

Conference

Conference56th Annual Design Automation Conference, DAC 2019
Country/TerritoryUnited States
CityLas Vegas
Period2/06/196/06/19

Keywords

  • 3D NAND flash
  • Bit-alterable
  • Bit-level operations

Fingerprint

Dive into the research topics of 'The best of both worlds: On exploiting bit-alterable NAND flash for lifetime and read performance optimization'. Together they form a unique fingerprint.

Cite this