Abstract
Gd2O3 nanotubes were constructed for the first time by assembling highly crystalline Gd2O3 nanoparticles through the use of combined soft template and sol-gel methods. Amphiphilic block copolymer was used as structure-directing agent and gadolinium isopropoxide as inorganic precursor in non-aqueous solution. The amphiphilic copolymer molecules are known to undergo self-organization above a critical micelle concentration, forming micellular architecture that further provides a structurally ordered active site for the nucleation and growth of Gd monomers. The resulting self-assembly of the Gd2O3 nanocrystals led to the formation of Gd2O3 tubular nanostructure after pyrolytic removal of the template. Transmission electron microscopy analysis indicated a mesoporous channel array along the [110] direction of the nanotubes where the wall of nanotube is well organized by the assembly of a highly crystalline framework of Gd2O3 nanocrystals. This Gd2O 3 nanotube exhibited weak superparamagnetic property and was found to be able to carry and elute a model molecule, i.e. ibuprofen (IBU), in a controllable manner via an external magnetic field. The mechanism of IBU release from the nanotubes with and without the use of magnetic stimulus was proposed.
Original language | English |
---|---|
Pages (from-to) | 3713-3719 |
Number of pages | 7 |
Journal | Acta Biomaterialia |
Volume | 6 |
Issue number | 9 |
DOIs | |
State | Published - 1 Jan 2010 |
Keywords
- Magnetic-sensitive
- Nanocrystal
- Nanotube
- Self assembly