Surface wettability of silicon nanopillar array structures fabricated by biotemplate ultimate top-down processes

Sou Takeuchi, Daisuke Ohori, Masahiro Sota, Teruhisa Ishida, Yi-Ming Li, Jenn-Hwan Tarng, Kazuhiko Endo, Seiji Samukawa*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We fabricated high aspect ratio 10-nm Si nanopillar (NP) array structures with a few-tenths-nm-gap arranged by fusing biotemplate and neutral beam etching processes to investigate the wettability [e.g., contact angle (CA)] with and without surface silicon oxide film. The NP array with silicon native oxides in all gaps exhibited super-hydrophilicity due to the chemical liquid-solid interface interaction and larger surface area than the Si flat surface thanks to the NP structure. These phenomena can be explained by using the Wenzel model. In contrast, when we selectively removed the native oxide on Si NP surface with our radical treatment, a gap variation from 11 to 43 nm stably resulted in a CA of more than 96° (hydrophobicity) with a maximum of 115°. This can be explained by using the Cassie-Baxter model with a filling factor. Our findings demonstrate that controlled surface wettability can be achieved by combining our controllable gap silicon NP array structures and the surface with or without silicon native oxides. The gap of a Si NP fills with water due to the capillarity on a silicon native oxide, but on a pure stable silicon one with a defect-free surface, does not completely fill. We found that Si NP structures with controllable gaps exhibit a surface wettability ranging from super-hydrophilicity to high-hydrophobicity.

Original languageEnglish
Article number0000704
Number of pages9
JournalJournal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
Volume39
Issue number2
DOIs
StatePublished - Mar 2021

Fingerprint

Dive into the research topics of 'Surface wettability of silicon nanopillar array structures fabricated by biotemplate ultimate top-down processes'. Together they form a unique fingerprint.

Cite this