Abstract
Pairs trading is an effective statistical arbitrage strategy considering the spread of paired stocks in a stable cointegration relationship. Nevertheless, rapid market changes may break the relationship (namely structural break), which further leads to tremendous loss in intraday trading. In this paper, we design a two-phase pairs trading strategy optimization framework, namely structural break-aware pairs trading strategy (SAPT), by leveraging machine learning techniques. Phase one is a hybrid model extracting frequency- and time-domain features to detect structural breaks. Phase two optimizes pairs trading strategy by sensing important risks, including structural breaks and market-closing risks, with a novel reinforcement learning model. In addition, the transaction cost is factored in a cost-aware objective to avoid significant reduction of profitability. Through large-scale experiments in real Taiwan stock market datasets, SAPT outperforms the state-of-the-art strategies by at least 456% and 934% in terms of profit and Sortino ratio, respectively.
Original language | American English |
---|---|
Number of pages | 40 |
Journal | Journal of Supercomputing |
Volume | 78 |
DOIs | |
State | Published - 17 Aug 2021 |
Keywords
- Pairs trading strategy
- Structural break detection
- deep reinforcement learning
- Continuous wavelet CNN